Matrix patterns and the inertia S_n

Adam Berliner*, Derek DeBlieck, Deepak Shah, St. Olaf College
Dale Olesky, Pauline van den Driessche, University of Victoria

The inertia of a zero-nonzero pattern or sign pattern \mathcal{A} is the collection of 3-tuples $i(\mathcal{A}) = \{(n_+, n_-, n_0)\}$, where \mathcal{A} runs over all matrix realizations of \mathcal{A} and n_+, n_-, n_0 give the number of eigenvalues of \mathcal{A} with positive, negative, and zero real part (respectively). This talk focuses on $n \times n$ patterns whose inertia contains $S_n = \{(0, n, 0), (0, n-1, 1), (1, n-1, 0)\}$, and we discuss some results pertaining to both zero-nonzero patterns and sign patterns. We also give a construction for an infinite family of patterns whose refined inertia contains S_n.

Keywords: sign pattern, zero-nonzero pattern, inertia