Thirty-Sixth Southeastern International Conference

Combinatorics, Graph Theory \& Computing

Program and Abstracts \ Florida Atlantic University @ March 7-11, 2005

Invited Speakers

$36^{\text {th }}$ Southeastern International Conference on Combinatorics, Graph Theory, and Computing

Monday, March 7, 2005
9:30 AM and 2:00 PM

Alexander Rosa

MacMaster University

Ringel's Conjecture and Graceful Labellings; Forty Years Later and Colouring Designs: Some Recent Results and Trends

Charles. J. Colbourn
 Arizona State University

Covering Arrays and the Power of Apathy

Abstract

A covering array of size N, strength t, having k factors with v levels each, is an $N \times k$ array whose entries are chosen from av-set \boldsymbol{V}, with the property that every $\boldsymbol{N} \times \boldsymbol{t}$ subarray has every one of the v^{t} t-tuples from V at least once as a row. To understand why these are important, imagine testing a device with k inputs each having v possible values; each factor is an input, and each level is a value for that input. Instead of exhaustively testing v^{k} possible input combinations, we can instead use the N rows of the covering array to prescribe tests. Each row is a test, each column is a factor, and the symbol in an entry gives the value for the factor in that test. Testing is not exhaustive, of course, but all possible int.eractions arising from \boldsymbol{t} or fewer inputs will be revealed by at least one .test. I\loreover, when \boldsymbol{t} « k, we typically find $N \lll \mathrm{v}^{\mathrm{k}}$. Such covering arrays have found extensive application recently in interaction software testing; while not well suited to all such problems, they are useful in many. When one considers that inadequate software testing costs the U.S. economy $\$ 20-\$ 60$ billion annually, tools for generating test suites (covering arrays) are sorely needed. To minimize testing costs, covering arrays with the fewest rows N for a given $\boldsymbol{t}, \boldsymbol{k}$, and v are of most interest.

While covering arrays evidently hold much practical interest, our focus in this talk is on mathematical reasons to like them. Most algebraic and combinatorial constructions are patterned on those for orthogonal arrays of index one (equivalently, covering arrays with $N=v^{l}$) and on recursive combinatorial constructions. We outline four main directions of combinatorial research on covering arrays: direct constructions, recursive (product) constructions, heuristic search, and probabilistic techniques.

We review each of these approaches briefly, focussing on the cut-and-paste constructions. We then weave the threads above to describe recent research on covering array construction using hybrid constructions. The idea is quite simple. The usual strategy for applying recursive methods for combinatorial designs is to first find many small ingredient designs, and then apply the recursive construction. In these cases, the ingredients do not interact and can be found independently of one another.

As we show, the cut-and-paste recursions for covering arrays are different. The ingredient designs can (and often do) overlap. So we propose a decomposition approach. The cut-and-paste recursions specify potential decompositions of large covering arrays into smaller arrays, and the specific decomposition determines precisely how these smaller arrays interact. Our idea, therefore, is to first choose the decomposition of the larger array, and only then to search for the smaller arrays needed. In this way, the interactions among these smaller arrays can be used both to simplify the search, and to permit the array to be "tailor-made" for the role that it plays. Once the properties of the small arrays and their interactions is determined by the decomposition, we can sometimes use direct constructions (from finite fields, designs, or finite geometries) to construct them; and when we cannot, we can employ heuristic search techniques to find them by computer. Of course, the benefit in the approach is that computational methods seem much more effective when the array to be found is small. We propose a particular approach for strength two arrays that exploits "don't care" positions, demonstrating the power of apathy. We close with a list of combinatorial questions on covering arrays.

Mateja Sajna

University of Ottawa
An Invitation to Almost Self-complementary Graphs

A graph is called almost self-complementary (A.SC) if it is isomorphic to the graph (called an almost complement of X) obtained from its complement by remo \backslash ing the edges of a 1-fuct.or. The study of almost self-complementary graphs
as first suggested
by Abpach, aud i11itiatcd by Dobson and Sajna in a 2004 paper on almost sclf-c:ornplcmentary drrnlant graphs. This paper rewabl the complexity of the problem of ASC graphs: while C\'ery automorphism of a graph is also an automorphism of its complement,
the same may not be true for an almost complement; and while an isomorphism from n self-complementary graph to its complement exchanges the two edge sets, an isomorphism from au ASC graph to au almost complement need not prcsen•e the "missing" 1-factor and therefore need not exchange the edges of the graph with those oft he almost complement. An isomorphism from an ASC graph to an almost complement, as well as an automorphism of au ASC graph, is called jafr if it preserves the associated !-factor. In this talk we shall present some recent results on \'arious types almost self-complementary graphs.

Part I: Constructing Almost Self-complementary Graphs
Several construction techniqur.s for ASC graphs will be introduced and used to prove existence results for i;ome infinite families of ASC graphs, in particular, regular, vertextransitive, and circulant ASC graphs, distinguishing those that admit fair
isomorphisms into all almost complement.

Part II: Homogeneously Almost Self-complementary Graphs

We shall focus on a special class of vertex-transitive ASC graphs called homogeneously almost self-complementary; that is, ASC graphs possessing a vertex-transitive group of fair automorphisms and a fair isomorphism into the almost complement that normalizes it. It turns out these are precisely the graphs that occur as factors of symmetric index-2 homogeneous factorizations of the graphs $\mathrm{K}_{2 \mathrm{n}}-\mathrm{n} \mathrm{K}_{2}$. We shall present several constructions and existence results, including the classification of all integers n of the form $n=\mathrm{p}^{\mathrm{r}}$ and $n=2 p$ with p prime for which there exists a homogeneously almost self-complementary graph on 2 n vertices.
Keywords: almost self-complementary graph, regular graph, vertex-transitive graph, circulant graph, homogeneously almost self-complementary graph, homogeneous factorization.

Thursday, March 10, 2005
9:30 AM and 2:00 PM
John Wilson
University of Toronto
Axiomatic Circuit Theory

Friday, March 11, 2005
9:30AM
Tran van Trung
University ofDuisburg-Essen

Combinatorial Methods for Covering Arrays

We survey algebraic and combinatorial techniques for constructing covering arrays of strength t. Some of these techniques are inspired from a recursive construction given in the 80's by Roux.

Friday, March 11, 2005
11:00 AM
Brief Session Dedicated to the Memory of Frank Harary
Organized by Gary Chartrand with John Gimbel and Jay Bagga

1 On Menon-Hadamard Difference Sets in Groups of Order $4 p^{2}$
Omar A. AbnGhneim*, Ken W. Smith, Ccnt:rnl J\:Iirhigan University; Pm1l E. Becker, .Jennifer I<. Mendes, Penn State, Erie

Menon-Hadamard difference sets in groups of order $4 \mathrm{~N}^{2}$, with \boldsymbol{N} a multiple of 2, 3 , or 5 , we the only known gennindy 11011ahdia11 difforence sets. liams showed that if N is a prime congruent to $1 \bmod 4$, then only 6 groups of order $4 N^{2}$ could admit Menon-Hadamard difference sets. 111 this paper, we prove that another two of these 6 groups can be eliminated. Our μ ri111ary tools are quotient images and complex group char<1cters.

2 A New Algorithm That Improves Network Performance by Maximizing The Number Of Disjoint Paths

\IVasim El-Hajj, Ghassen Ben Brahim, Chandrasekhar Achalla*, Dionysios Kountanis, Western Michigan Uuiversity

In this paper, we will be dealing with a network planning problem. It consists of optimally i11tcrco1mcd.ing a set of new switches to d pre-existing nct:work contigural.ion. WI. consicfor a nf.1,work with two types of nocfos: tlw switcl1f.s will be p!M:e<l in the backbone network nnd the network access points will be placed nt the edge network. fotcrconnecting uew switches to a pre-existing uetwork
lws the advantage of not modifying thc current co1111ections. The goal of the proposed scheme is to improve the overall network performance in lerms of: (I) increasing network protection and fault tolerance, (2) providing better Quality of Services (qoS), and (i) decreasing the blocking probability. We propose an intelligent al:.;'orithm that maximi7,es the number of link <lisjoint. paths between a set of source and destination pairs. Having several distinct paths, the blocking probability will eventually decrease because more routes will be available for different source and clesti1 latio11trnffic exdm11gc. The 11etwork will he simulated hy a graph c; $=(V ; \boldsymbol{J})$, where V is thf. set. of nodes ankl]; is the set. of links. O m objective is to maximize $P_{; i_{i}} \mathrm{Vl} _{\cdot i}, j$, where $\Lambda \because ; \%$ is the maximum number of distinct shortest pc1ths betwee11 node i ansl node j locc1te-l at the edge network under the constn1i11t that the <lcgrce oft he new switches aclled is a given constant.

Keywords: Net.work <lesign and planning, prot.cc:tion, fault, tolerance, blocking probability, QoS

3 Cluttered Orderings for the Vomplete Bipartite Graph and the Complete Tripartite Graph

Tomoko Adachi, Toho University, Japan

The desire to speed up secondary storage systems has lead to the development of rocl 1111da 1it arrays of indepenclent disks (RAID) which ilicorporatc red1111d,1cy ntilizing erasure code. To minimaze the access cost in H.AID, Cohen, Colbourn and Froncek (2001) introduced (d, f)-cluttered orderings of various set system for positive integers d, f. Iu cai;e of a graph this al110111ts to all ordering of tlw edge set such that the number of points c:ontainc<l in mly \downarrow c:onscc.11tivc edges is bo11nrlod by thc number f. For the complete graph, Cohen et $11 l$ gave some cyclic co11strncticms of cluttered orderings based on wrapped rho-labellings. t-f' uller, Adachi and .Jimbo (2005) investigit.ed cluttered orderings for lhe co111plctc bipartite graph. RAID nt.ilizing two-rlimentional parity code can be modeled by the compl<'1.< biparl.it.c grnph. Jvf' uller et al. adapted the concept of wrapped Delta-labellings to the bipartite case instead of wrapped rho-labellings, and gave t1c explicite constructio11 of several infinite families of wrapped Dclt11-labclli11gs. Herc, we investigate constructions of more generalized infinite families of wrapped 0f)lta-labcllings leading to cluttered orderings for the corresponding bipartite graphs. '. \backslash foreovcr, we investigate cluttered orderings for the complc1-c tripmtit:c grnph. RAID 11tilili11g t.hrce-dimentional parity c:ode can be modeled by lhe c:mnplct.c tripartil.f'. graph. In this U11k, we will give constructions of wrapped Dclt.a-labelliugs for such cases.

4 On Muitipart.ite Poscts

Ceir Agnarsson, George I \backslash Iilson University

Let $\mathrm{P}=(X)$ be a partially ordered set (or 710 sed for short). If the underlying set X of P has a partition $\mathrm{X}=\mathrm{X}_{1} \mathrm{U} \cdots \mathrm{U} \mathrm{X}_{\mathrm{m}}$ wilh $m 22$, such that P is incluced hy a collectio11 of bipartite poct.s P ; $=\left(\mathrm{X} ; \mathrm{X}_{\mathrm{i}} \mathrm{t}, ;\right)$ where $i \mathrm{E}\{\mathrm{L} \ldots$, ,IIl. l$\}$, then we say P is a m-parlile posel. If P is m-pariite for some m 22 theu we say it is mttltipartite. Such multipartite posets occnr naturally in many situations, in particular wheu combinatorially dlllctly;,d11g discrete communica.tion 1wtworks.

In this talk we risc11ss thc order dimension of m11ltipartif.<! posct.s and what parameters can be used to present concrete 11pper and lower hounds for them in genenll. Some open problems will be presented.

5 On Cycle Matrices of Graphs

K. I3r1r1s1.1bramanir1n Indian Statistical Institnt<", India; Sahu Alsar<lary*, University of the Scie11ces in Philadelphia

For simple graphs without loops or multiple e<lges, we define four parameters $a(G)$, $A(\mathrm{G}), b(G)$, and $/ \mathrm{J}\{\mathrm{G}) \bowtie \mathbb{B} \subset \mathcal{C} 011$ the cydc sp;icc. We completely dmnictcrizc grnpb for which $a(C)=A(C)$. We also introduce an invariant JJ(G) ahd connect it with $b(G)$.

6 On minimally 3-connected binary matroids

loP. An<lerson*, Hairlong Wn, The Univ<"rsity of Mississippi
A 3-connected matroid Nf_{f} is said to he minimally 3-connected if for any clement e of $/ 1 /$, the 111atroid $l \backslash Z l e$ is 11 tht l-co1111ccted. Dawes (J. r.ombin. Theory ,'"er. $R 40$, (HI8G), lli!J-168) show<'d that rill minimally -connect.eel grnphs c;m be constrnr.t.ed from 104 such that every graph in each intermediate step is also minimally 3 c:onnected. In this paper we generalize this result to minimally 3-c:onnectecl binary 11mtroids.

Keywords: binary matroicls, 3-connected matroids
7 Robustness of Property of Being Matchable subject to Vertex Deletion
R.E.L. Aldred, University of Otago, New Zealand; R.P. Anstee*, University of British Columbia, Canada S.C. Locke, Florida Atlantic l:"niversity
\Ve consider cl\&;ses of graphs which clre easily secl1 to have 111d11yperfect 111dthings. Wf. then consider what. properties to impose on choosiug vertices A for vert1x deletion in a graph G (from such a class) so that the vertex deleted subgraph $G-A$. has a perfect matching. Certain conditions are easy. Th general, an even number of vertices 11111st he deleted. If the gTaph is hip;:1rtitc then the deleted vertices 11111 t have equal numbers from both parts of the bipartition. Also one cannot delete all the neighbours of a given vertex. We obtain two results. In one, the deleted vertices are co11fil1ed to tlie 'edge' of the graph alld in the other, the deleted vertices arc reqnirc<I to be far ap;ut.. The motivation will a result of Jamison and Lockner presented at C G TC 34.

8 DNA Compression using Inversions and Longest Increasing Sequences

Ziya Arnnvut, SU:\"Y Fredonia

Compression of $\mathrm{D}: \backslash$ ' A sequences is one of the most. challenging tasks in the field of data comprcssiou. A 111011g the gcucral purpose coJcrs, only cinitl1111ctic coder achives compression rate below two hits per symbol. Sta.ndard u11iversal compression tools, such as gzip and \Zip, usually fail to achieve compression below two bit per sy1ubol 011 DNA data files. DNA compressors ad1icve co111pressio11 ra1c below 2 hits per symbol. However, most of $D N A$:;pedfic: cmnprcssors rlie verv slow ancl often they use pattern matching techniques. hi this work, we show that using recently introduced inversion coding and longest increasing subsequence techniques we can always achieve compression ratio below two hits per sy111hol il.Id ull some DNA tes. files we 11chieve bel1 er rnte tha11 1 h 0 most. of I.he DNA compn ssors.

Keywords: DNA compressicm, Inversion Coding, Longest IncrC"asing subsequence.

9 2-Regular Leaves and Partial Decompositions of the Cornplcte Graph Λ_{n}
D. J. Ashe*, University of Tennessee at Chattanooga.; C. A. Rodger, Auburn U11ivcrsity; II. L. Fn, N;;tlional Chi,10 T1111g U11iY<'rsity

We find necessary and sufficient conditions for the existence of n fi-c:yclc system of ! $\left\{\right.$. . $E(R)$ for eYery 2 -regular not 1 wc:essarily spanning subgraph H of $1 i_{n}$.

10 Bibliometrical gorithms for discovering communities in complex networks

Hemant Balakrishnan*, Narsingh Deo, University of Central Florida

Receut studies revel that. most of the real world 11ctworks org,mi,,c themselves to form commm1itirs. A c:ommnnity is formr<l by subset. of nodes in a graph that are "dosely related". Extracting these communities would lead to a better understc111dillg of such networks. Gu111111111lity related research hcl; focused 011 two 111ail problems, communij-y discovery anc! comm1mity identificat,ion. From a grnph theoretic perspective community discovery is the problem of classifying nodes of a graph $G=(\mathrm{V}, \mathrm{E})$ into subsets C ; $\mathrm{V}, 0=\mathrm{i}<\mathrm{k}$, such that nodes belonging to a suhsct. C.i arc all closely related where as oo111n11111ity ide11tific,1tio11 is the problem of identi (ying the comnmnit.y C; to which a srt. of ncitles $S \mathrm{~V}$ belong to. In this paper we first perform a brief survey of the existing community-discoveryalgorithms and then propose a novel approach to discovering communities using hibliogrn.phic: metrics. We l'llso test the propose<! algorithm on rcal-worlcl ndworks and on computer-generated models with known community structures

11 On the Erdos S'os Conjecture for graphs with no K2,s

Smmin 13ala.c;11hrn.manian*, Edward Dobson, :
,Jississippi Slate University

Let k be a positive integer. Erdos and Sos have conjectured that every gra.ph of average <lrgree gre;it.er than J. - 1 contains every tree of order $\mathrm{k}+\mathrm{J}$. In this paper, we verify Lhat this conjec:Lure is true in the special case of graphs that contain no K_{2}., wheres 22 and $\boldsymbol{k}>12(\mathrm{~s}-1$).

12 Being a Unit Triangle Order is a Comparability Invariant

Barry A. Balof*, Whitman College; Kenneth P. Bogart, Dartmouth College
A property P of a partially ordere $<\mathrm{s} \mathrm{d}$ is a mmpn.rn.bilily inwn.rim. 1 ., if, given mw two posets X cl11d Y that have the same comparability graph, then either both X and Y have property P or neither have property P. A theorem of Galla.i's allows us to <lctermi11c the cu111parahility invariance of a property thrnugh the reversal of order a1110nom011s sct.s within a poset. wil.h th111, property.

A uni. triangle order is a poset X that has a representation by unit triangles, that is, every element in X can be mapped to a triangle, with each triangle having one vertex 011 one of two $\mathrm{p}, 1 \mathrm{n} 1 \mathrm{llcl}$ hascli11cs, nm ! the other two vertices 011 the other of those two baselines, with all triangles having the same area. In this talk we will show that being a unit triangle order is a comparability invariant, and, with time pen11itti11g, give a sull111cly of tlie know11 results c.1.Lout c:ompc1raLility illvaric111æe and geometric representations of posrts.

13 Some Results Related to Maximal Independent Sets of Vertices in a Graph

Rommel Barbosa, Institute de Informatica, rnivcrsidadc Federal de Goic1s, Brazil

A graph is Z_{m}-well-covcred if $\mathrm{III}=\mathrm{IJI}(\bmod 111)$, for cll /, / maxiuw.l i11dcpc11cc11t sets in $V(C)$. A graph G is strongly Z_{m}-well-covered if g is a Zm -wcll-covcred grnph and $\mathrm{G} \backslash\{\mathrm{e}\}$ is Z_{m}-well-covered, Ve $\mathrm{E} E(G)$. A graph C is $1-\mathrm{Zm}$-well-covcred
 prove some properties for these da.c;ses of g;raphs.

14 Splitters and Barriers in Graphs Having a Perfect Inter•nal Matching

Miklos Bartha, Memorial University of Newfoundland
$l \backslash$ Iatchings with a specified potential defect are introduced, which arc not required to cover a specified set of vertices. These vertices are called external, as opposed to internal vertices which arc expected to be cuvcrccl hy all 11wtcllings of this nut.me. Snc:h matchings play an import.ant. role in the mnt.hematical <fosC'ription of certain molec:nlar switching devices called soliton autornat,1. A perfect (maxim11111) internal matching is 011e that covers all (respectively, a n1dxim11m nnmber of) interna.l vertices. The notion of harriers is adopte<l from cla.c;sic:al ml'l1.rhing thcory, and splitters are introduced as appropriate counterparts of extreme sets of vertices in graphs having a perfect matching. !Vlaximal splitters are compared -vith maximal loct1Tiers, aud factor-critical g^{r} tph are re-iutrnduced in thf' new cm1tcxt. A Tut.tetype charad.erbrntion is given for maximnl splitt.ers in grnphs with perfect. int.en m matchings, and an efficient lgorithm is worked out to locate the maximal barriers of such graphs.

Keywords: gn:iph matchings, split.ters, barriers, factor-criticnl gniphs

15 On Cycle Extendability

LeHo_y B. l:k11sley*, David E. Brown, Utah Stat.e Univrrsity

A cycle C of length k iu a graph G is extendctble if there is an iuduc<'d subgraph $011 \mathrm{k}+1$ vcrtiCf\$ of G which rnntains all the vertices of C , mid a cycle of leJgt h $\mathrm{k}+\mathrm{l}$. A graph, G , is cycle extendible if every cycle of G which is JJOt a Hamilton cycle is extendable. 'Ne investigate cycle exte11clible Tfamiltoni,1.11 chordal gn1phs and the bipartite equivalent.

Keywords: Graph, cycle ext111<lible, Hamiltonian, Chordal

16 On Computing the Number of Topological Orderings of a Direct.ed Acyclic Graph
Wing-Ning Li, Zhichun Xiao, Gordon Beavers*, University of Arkm1sas
$\mathrm{C}<\mathrm{m}$ the 11 mnh cr of topologirnl orderings of a Directed Acyclic Grnuh (DAG) be effic:ient.ly <letennine<l? We. propose a <livide-a;1<l-co11q11cr rnethorl that. part.itions a DAG into sub-digraphs from which the number of topological orderings is calcnlate <1 using co111binatorial rnethods. Algorithrns are com;idere<l to identify sub<ligraphs whose vertices m11ts occ11py the s;imc specific: rnngc in any linear onlering. Such sub-digraphs are $n_{-} \backslash$ lled static sub-digTaphs. Transitive closure and transitive reduction are useful in iclentilying the static sub-digraphs. Open issues, such as s11b-dign1phs for which 110 obvious part.itions can he found, ;1re disc11ssccl.

Keywords: Direct.cc-I acyclic graph, topological orrlcr, transitive closure, trn.nsitive reduction

17 Regularity among generalized Schur numbers

Pct.er Illanclwrd, Miami University, OII
We discuss generalized Schur numbers. Let $\boldsymbol{h}(r ; m, \boldsymbol{d})$ be the $\mathrm{l}<1$ st \boldsymbol{n} such thnt any imrtiticm [11 $=\mathrm{A}, \mathrm{UA}_{2} \mathrm{U} \cdots \mathrm{U} A$, hals sonic cell A_{i} containing; set $\{\mathrm{r}, \mathrm{y}, i+$? $\left.\}\right\}$ with thr. properties that $\mathrm{x}, \mathrm{y} 2 \mathrm{~m}$, and $\mathrm{Y}-\mathrm{xi} 2 \boldsymbol{d}$ In other worrls, the least. n so Ihat. no r-coloring of $[\mathrm{n}]$ fails to yield a monochromatic.: Schur triple $\{. x, y, \dot{i}+y\}$ with differences between values at least d and m respectively. We discuss unexpected reg11larity among the 11111nhers $11 .(\mathrm{r}, \mathrm{m}, \mathrm{l})$ for small val11cs of r .

18 New Results on Packing and Covering Designs

Iliya Bluskov*, University of :'\orthern B.C., Canada; 11alcolm Greig, Greig Cornmltiug, Ca1iaclct

Given a set V or size te, a ($\mathrm{V}, \boldsymbol{k} \geqslant$?) covering (packing) design is a collection orb k-subsets (oc11kd blocks) of V such that ecldh pair of ele111e11ts of V occurs in at lc;i,i,t (at most) > blocks. The covering (packing) 1111111br $\mathrm{C}(\mathrm{v}, / ; \gg$.) ($\mathrm{D}(\mathrm{v}, \mathrm{L} . .,>,$.$)) is$ the minimum (maximum) value of bin any ($v, k, \gg)$ covering (packing) design. We present some new results on the covering and pa.eking numbers for the parameters $(11,5, \backslash),>1$ Iu particular, for $\%=5$ ci11d 1^{1} even, there circ 24 open cases with >21, cach of which is the start. o[an open series for $>,>+20, \geqslant+40, \ldots$. We solve 22 of these cases with>. 21, leaving open ($v, 5,>$.) $=(44,5,13)$ and $(44,5,17)$ (an<l the series initiated for the former). In the packing ccise, we reduce the number of open sets of parameters from 20 to 10 .

19 Multicolor Euclidean Gameboard Ramsey Numbers .kns-P. Boric, Tec:hnische Univcrsitiii.t Brn1msd1wcig; Gcnn;in_y

For the three Euclidean tessellations of the plane we define IJ_{1} to be one cell (triangle, square, or hexagon), R_{2} to consist of all cells snrronnding one vcrl.ex, and Bn to cousist. of $\mathrm{B}_{\mathrm{n}}-\mathrm{I}$ together with all 11cighbori11g cells. These scquem:cs /J,, ,ire used as host graphs for the 11111licolor H.amsey 111miber $\mathrm{r}(/ / 1, / / 2, \ldots, \mathrm{Hc})$ being the smallest number n such that every coloring of the edges of Bn using the colors $1, \ldots$, c co11tail1s a graph H_{i} iu color i for at lc,Jst one i. First result.s 011 the existence of multicolor Enc:lirlcan gamcboarcl Rmnsey numbers ,111it some cxaC'1. vahlC's are presented.
Common work with Stefan Krause.

20 Linear dependency of sets of independently weighted bina $1 \cdot y$ vectors

Kim Bowman, Clernson University

We investigate the following model of random binnry vc•ctors: c.oordinMes nre chosen independently: the ith coordinate is chosen to be one with probahilit.y L , where Pi is the ith prime. In particular, we study how many vectors need to b c chosen to ohtaiu a linca.rly clcpcu<lcut set with high prohnhility.

Keywords: binary vectors, linear dcpenrlcncy

21 The Distribution of the Size of the Intersection of a k-Tuple of Intervals

Vlnrlimir Ilm:ovic*, Sh:i.nzen Gao, Heinrich Nkdcrlrn.nsen, Florida Al.lantic University

Let $\left({ }_{1}, \ldots, h\right)$ be a k-tuple of nonempty subintervals of $[L \ldots, n]$. How many of. them intersect. in an interval having 1 clements $(1=0, \ldots, 11)$? For $k=2$ we have a bijection of the pairs (/, J) with $/ / \mathrm{n} . \mathrm{JI}=\mathrm{I}$ to the discrete octahedron. For larger k the results seemto be less familiar; the rcsull.s for $\mathrm{k}=3,1,5$; re not in the On-Line Encycloped-ia of Integer Seq1tc11.ccs

22 Perfect-Matching Preclusion

H.obert C. Ilrighmn*, l:nivernity of Central Flori<la: Frnnk Ifarnry, EJi7,abeth C. Violin, Harvard College; Jay Yellen, Rollins College

The (perfocl-) matching preclusion nmber, $m p(G)$ of an -vertex graph is the minimum number of edges that must be removed from in order to ensure that the re:mlt.ant. graph does not have a perfect. matchiug if is eveu, or a 111atchi1Ig 011 vertices if is od<l. We establish the value of mp
(G) for various classes of graphs.

23 Probe Interval, Interval k-, and Tolerance Graphs

D,wicl E. Brown*, Utah State Uuiversity; Stephen C. Flink, U11iversity of Colornrlo at Denver
\Ve iutrod11ce a series of ge11endi:1,ations of prol,e interv. \backslash I graphs called t-probe interval graphs, (a probe interval graph is a 1-probe int.erval graph) anrl show, via a method similar to graph homomorphism, that each class, including the class of probe interval graphs, is contained in the class of interval k-graphs. Any probe interval g1-aph is dc,wly a tolcnLIICC gn1ph, but for some $\mathrm{f}>1$ this relatiom;hi μ f ils. We wish lo rlekrmine !:his t . Also, the interval k-graphs whose complement. describes a poset arc believed to have a nice characteri7,at,ion via forbidden subgraphs, cl11d we give the co11ject11re here, clnd a new description of these intervc1I k -graphs that is similar to the salient property of fond.ion graphs.

24 Hexagon Decompositions and Packings of the Complete Graph with a Hole

LaKeisha Brown*, Robert (;ardner, East Te11J1essee State University; (;ary Coker, Frilnc:is 1-forion University; .Janie Kennerly, Samforrl University

A decomposdion of a simple graph c; illto isomorphic copies of a grapl1 g is cl set $\{\mathrm{y} 1, .1 / 2, \ldots, \mathrm{Ifn}\}$ where $\mathrm{ff} ;$.J anrl $V(\mathrm{~g} ;) \mathrm{C} V(G)$ for all $\mathrm{i}, E(q ;) \mathrm{n} E(g ;)=(V)$ for $i f j$, and $L_{i=1}^{n} J_{E(g ;)}=E(G)$, where $V(G)$ is the vertex set of graph G and $E(G)$ is the edge set of grnph G. A mn.ximn.l pn.rkin. 1 of 11simple graph G with isomorphic: copies of a graph g is a set $\left\{\mathrm{g}_{1}, \mathrm{~g} 2, \ldots, \mathrm{~J}_{\mathrm{n}}\right\}$ where g ; g and $\mathrm{V}(\mathrm{g} ;) \mathrm{C} \mathrm{V}(\mathrm{G})$ for
 111.:I. The complete grapl1 $011 v$ vertices with cal hole of si.:e $w, T<(k, w)$, haly vertex

set $\mathrm{E}(\mathrm{K}(\mathrm{v}, \mathrm{w}))=\left\{(\mathrm{a}, \mathrm{b}) \mathrm{la}=/ \mathrm{b},\{\mathrm{a}, \mathrm{b}\} \mathrm{C} V_{v^{-}}, v \mathcal{V} V_{w}\right.$ ind $\left.\{\mathrm{LL}, \mathrm{b}\} \not \subset \mathrm{V},.\right\}$. \Ne give necP.Ssary an<I sufficient. con<litions for flecyde decompositions of $I<(V, w)$ and give preliminary results concerning 6 -cyc:le packings of $K(v, w)$.

Keywords: 6-cycles, graph decompositions, graph packings, complete graph with L hole

25 Alliance Edge- and Vertex-Stability in Graphs

G. Bullington, L. Eroh, .J. Koker, H.l\Joghadam, S. Winters, University of Vlisconsin-Osl1kosh

As defined by S. 111 Hedetniemi, S. T. Hedetniemi and P. Kristiansen, a (cldensive) alliance of a graph is a set of vertices satisfying the comlition that every vertex has at 111ot one 111ar 11eig1bor ill tha11 in . The cillia.1H:e m1111ber of, , is the s111odlc; r:arrlinality of any (nonempty) defensive alliance in . In Ihis talk, we give results addressi11g the following question: " \backslash Nhat. graphs keep the same alliance number when a vertex (resp., edge) is deleted?" We clc1ssily dIll alliance stable grnph; having low -valll(.'8 and those within pa.rticular clases of graphs (e.g., co111plcte graphs, grirl graphs). We will also presEmt some related honnds m wP11 as $\mathrm{r}<$ 's11ts for olhPr types of alfainces (e.g., strong alliances, global allia.nc:cs).

Keywords: allia.nces, defensive a.llianccs.

26 Matching Cove1•ed Graphs

Kimberly Jordan Burch*, Montclair State Universily; Earl Glen Whitehead,.Jr., University of Pillslmrgh

Two edges in"' graph G arc in.rl.pr.n.dr.nl if they share no common vertex. A 7iri.fr.r.l matching of a graph G is a spanning subgraph of G consisting entirely of independent edges. G is said to be matching covered if for every edge e in G there exists a perfcc;; matching co11tailii11g r. A matching covered gni.ph is eq11ivalc111. to a totally matchablP. grnph. We prove conrlitions 1111lif which several families of graphs arc matching covered. Families presented include meshes, complete tripart.itc grnphs, genenili:1,ed theta graphs, platonic graphs and (k, g)-ca.ges. An $m \times n \mathrm{mc} 8 \mathrm{~h}$ is the pro<h1ct of path graphs h<lving 111 . anrl $I l$ vertices. A (/i _q)-rn_q. is a k-r<'gnlar grn.ph of girth g with the fewest possible number of vertices. We also examine suffi cient conditions under which a graph will be matching covered.

27 Colouring 4 -cycle systems

Andrea C. Dmg-css*, D:wid. A. Pike, :\frmorial l:nivcrsit_v of Ncwfo 1111dla11d
An m-cycle system of order n is a partition of the edges of the complete graph $\mathrm{T}<$ i11 10 111-cydes An m.-cyde sy:stam of order n is :said to he 1. .-colonrahle if its vertice:s may be partitioned into k sets (also called colour classes) such that no cycle has all of its vertices the same colour. A cycle system is $/ .-$-chromatic if it is k-colourable, but not (k-1)-colourable. We focn:s on colomiug:s of 4-cycle sy:stem:s. For ,my L. 2 2, we show that them exists a A:-c:hromatir: 4-r:yde system. In part.irnlar, we construct a 3 -chromatic 4 -cycle system of order 49 .

28 Alphabet Overlap Digraphs

Arthur H. Busch*, J,Jichael S. .Jacobson, University of Colorado at Denver; GuanTao Chen, Georgia State Univcr:sity; Ralph J. F,mdrec, U11iversity of Memphis

Michael Ferrara and Ronald .J. Gould, Emory University Nathan Kahl and Charle::; L. Suffel, Stevcu:s fo:situte of Technology The a $l_{p} h_{a} b_{b} t$ ouen a_{p} dig $_{\mathrm{g}}{ }_{p} h$ $G=G(d, \mathrm{I}$:, , $)$ his as its vertices all words of length \ddagger formed from an alplmhet of size d. The arc ($\mathrm{W} 1, \mathrm{w} 2$) is in $\boldsymbol{A}(\boldsymbol{G})$ exactly when the last t letters of 1111 coincide with the first t letters of w_{2}. We will discuss various properties of alphabet ovcrl,1p digni. $\mu \mathrm{h}: \mathrm{s}$, and their 1111directed a1klogue including i11depc11dauce munhcr, diquc nnmber, conner:tivily, panr:ydicit.y, all! chromatir: nmnber 11s well as the connection between alphabet overlap digraphs and line digraphs.

29 Some properties of n-dimensional generalized Marlkof equation Shanzhen Gao, Ca fer Caliskan*, Florid;1. Atlantic University; Xianglin Liu, Cuang:;)hon Gongye l:niversit.y, China
\Ve discuss some properties of n -dimensional generalized $\mathrm{J} \backslash$ farlkof equations.

30 A Local Method for Community-Mining Based on Clustering Coefficient

Amel Cami*, Nar:;iJJgh Deo, U11ivcr:sity of Celltral floricJa

Community mming in real-world networks has emerged as a problem of great practical importance in the last 2-3 years. :\lost of the existing algorithms fur solving thi:s proble111 111re graph-theoretic in miture: the real-worl<l 11etwork of interest. is modeled as a graph and commnnit.ics arc <letermined by analy:;;ing the
structure of thi:s graph. At ledSt two <lh,ti11ct fornmlatio11s of co1111111111y 111ill ing have bMn proposed: (1) partition into c:omnmnitics refers to partitinning a given graph into subsets of nocks, each forming a comm1111ity: mid (2) seed growth refers to finding the community to which a given 'seed node' belongs. Wldl,! sc,cral algorithm:; •employing tod111iq11es that nrnge fo111 licn1.n;hic--1.I d11.stari11g to spectral partitioning and network flows-have heen put forward for the former, relativdy little attention has heen devoted to the latter. In this paper we introduce a 11owd algorit1111 for the seed g^{r} owth problem. The proprn;ed algorit1111 is greedy, and thus very fast. It expands a community by searching the neighborhood of the nodes that already belong to this community and employs dust.ering c:ocffic:ient to determine which nodes to add to the community at a particular step. \Ve presc11t expcri 111 l 1 tct re:sults 011 both colllputer-gc11erat.cd and re,il-world 11ctworks.

31 A Generalization of the Erdos-Ko-Rado Theorem

Patricia Carey*, Josh Fair, Anant Godbole, East Tennessee State University

The Erdos-Ko-Ilario Theorem st;itcs 1hat ii' $l l>2 \mathrm{r}$, and A is :i farnily of pairwise intersecting r-subsets of $\{\mathrm{I}, 2, \ldots, \mathrm{n}\}$, then the nmximum number of sets that. citn be in A is given by

$$
\begin{array}{cc}
\text { IAI } \quad(\mathbf{n}-\mathbf{1}) \\
r-1
\end{array}
$$

Furthermore, if A actually has this many scts, thcre is some element x of $\{1,2, \ldots, n\}$ such that A is the family of all r-size subsets of $\{I, 2, \ldots, n\}$ co11t-ini11g 1:

We wish 10 gcnernli:;; this theorem. If A is a family of s11bsel s of $\{\mathrm{L} 2, \ldots, \mathrm{n}\}$, s11d that each subset is of sizer, and 'i A, B, C E A we wallt the condilio11s

> IAnnnci i 0
> IAnJJnc ${ }^{c} 1$ \# 0
> IA nB ${ }^{c} n$ CIf 0
> IA"nBnCIi 0
to all hold. An upper bound on the maximum 1111mber of sets t : 11 llt can be in A nln be found u:siug the probabilistic 111etlod whe11 the c:i:pcclcd sine of $\mathrm{e}_{\text {, }}$ ich set. ill A is r. WC also fonnrl an upper hon11d on this nmnber using a more genc'ral mcU1od tht $\backslash t$ guarantees that IAI $=r$ for each A E A.

Some Tricyclic Steiner Triple Systems
Xdl P. Carnes, McNeesc State University

A Steiner triple system of order v , $\operatorname{STS}(\mathrm{v})$, is a pair (S ; -), where S is a set of v poi11ts am ! - is a collection of three dc111e11t s111>sets of S , calied blocks such thrlt any pair of rlistinct points ofS is c:ontained in precisely one block of -. An a11tomorphism of a Steiner triple system, ($S ;-$), is a permutation of S which maps - onto ${ }^{-}$. In this paper we give necessary conditions for the existence of a Steiner triple :;yst.clll of order v admitting an c111tomorphisn1 consisting of three cycles of equal length and O or I -xed points.

Keywords: automorphism, tricyc:lic, Steiuer triple system

33 On Friendly Index Sets of Second Power of Paths

Sin-Min Lee, Urian Chan*, Zhou Xin-lin, San Jose State University; Yong-Song IIo, Nan Chiau High School, Singapore

LCt, G he a graph with $\mathrm{V}<$ 'rtex $\mathrm{sd} \mathrm{V}(\mathrm{G}) \mathrm{nm}$! edge set $\mathrm{E}(\mathrm{G})$ am! $\mathrm{kt} A$ he an ahelir1n group. A labeling $\boldsymbol{f}: V(C l)$ _. A induces an edge labeling /* : 8(G) -+ A defined by $J^{*}(x y)=J(x)+J(y)$, for each edge $x y \mathrm{E} \mathrm{E}(\mathrm{G})$. For i $\mathrm{E} A$, let $v 1(i)=\#\{v \mathrm{E} V(G): J(v)=\mathrm{i}\}$ and $c,(\mathrm{i})=\#\left\{\boldsymbol{e} \mathrm{E} E(G): \boldsymbol{f}^{*}(\mathrm{c})=\mathrm{i}\right\}$. Let $r(J)=\{h(\mathrm{i})-\mathrm{e} \cdot \mathrm{r}(. \mathrm{j}) \mathrm{J}:(i, i) \mathrm{E} \| \times / 1\}$. A labeling .f of a graph G is said to be A-friendly if $\mathrm{Jt} 1(\mathrm{i})-v 1 \mathrm{U})!\mathrm{S} 1$ for all (i, j) E $A x A$ If $C(J)$ is a (0,1)-matrix for an A-friendly labeling J, then f is said to be A-cordia.l. When $A=\mathrm{z}_{\mathrm{z}}$,, the f 'ie11dly i114ex set of the grnph $G, F l(G)$, is defined as $\{\mathrm{k} 1\{0)-C 1(1) 1$: the vertex labeling \boldsymbol{f} is Z 2 -friendly \}. In this paper, we completely determine the friendly index sets of second power of paths.

34 The Queens Separation Problem

R. Douglas ChathamChatham, Gerd H. Fricke, R. Duane Skaggs, Morehead State University

The da<sic- n-qmens problem it<ks for rln arrangement of n qneens on an $n x 11$ chessboard in which no two queens attack each other. We show that for $n>5$, we can place $n+1$ queens that don't a.tta.ck each other on an $n x n$ board, if we are ,tllowcd to ctlso pl,1ce a single pawn 011 the hoard to block a.tt,1cks. We al:;o proof tlmt $n+k$ queens can be separated by k pawns for large enough n.

Keywords: 11-Queens problem, Queen separation

35 On The Construction of Graphs with Large Numbers of Spanning Trees

Andrew Chen*, Abdol-Ilossei11 Esfaha11ian, Michigan State University

Let $\mathrm{t}(\mathrm{G})$ denote the number of l,ibeled spanning trees of a connected graph (; Given G, it is k11owl how to co111p11tc $t(G)$. However, litllc is
kllown abo11t tlm extremr1l version of the problem, UmL is, given Lhe nnrnber of vertices n and the number of edges m, find ct connected ($\mathrm{n}, \mathrm{rn)}$ grnph G such Umt $\mathrm{t}((:) 2 \mathrm{t}(\mathrm{H})$, where His any other (n, m) connected graph. S11d a gniph (; is wiled a t -optimnl graph. Let. $\mathrm{t} .(\mathrm{n}, \mathrm{m})$ he the m1mber of spanning trees tha1. a t-optiJT\}; l (n, m) graph has. We present brute force results (obtained through using a software called nauty) for determining values of $t(n, r n)$ for $n S 12$. These results andothers prnvide motivctio11 for a number of conjed.ures, so11w old and sollle new, with regard to the c:onstrnc:tion oft-optimal graphs. 'fogetlwr, 1lwse conject.nr<'s suggest a technique for finding many t-optimal (n,rn) graphs when $2 \mathrm{~m}: \mathrm{S} 3 \mathrm{u}$.

Keywords: spanning trees, graphs, t-optirnal

36 Stable Multisets

Eddie Cheng, Oakland University

A stable multiset is a generalization of stable set (or independent set) such that a vert.cx can be included more thau 011cc up to some upper houll $(\square ;$ iuclncc<l hy the vertices and edges. This concept was introduced recently hy Koster and Zymolk11. In this talk, we report some of their results as well ns our resn]ts (joint
ork with Sven de Vries). The talk will include a result. 011 a polynomial tilue algorithm for this problem on a special da<;s of graphs.

Keywords: stable set, independent set, polynomial time algorithm

37 Tiling with Triominocs

Patrick Callahan, Univcrnit.y of California; Phyllis Chinn*, Ilnmboldt. State l\}niversit,y; Silvia Heubach, California State University

Solomon Golomb, in a Hlli:l talk at the Harvnrrl l\fathemrit.ks Clnh rldinerl a dac,s of geometric figures called polyominoes, namely, connected figures formed of congrll(mt squares placed so that ca.ch square shares one side with at least one other :sqnare. Do1ni11oes 11sc 2 :sqm1!'cs, Tctris piece:; (or tctrominoc:s) 11sc 4 :;quarc:s. Polyominocs wen, popnlarize<l by ! \fart.in Gardner in his Sci<,nt.inc American c:ohmms. Many of the initial questions asked about polyominoes concern how many can be funned u:sing n-squa. ${ }^{\text {res. }}$. In this pa.per we con:sider tiling:; of rectangle:; u:sing the :l-sqnnre fig11rcc, or triominoes. Since there ar< only two slldd shnpes with 3 -squa.res, we count. instead how many ways they can be used to tile 2 by n and 3 by n rectangles and how many of each shape are used among all the tilings of a μ mticulcir sie rectangle.

Keywords: tilings of rectangles, triominoes

38 Cages of degree k are k -cdge-connccted

Michael H. Moriarty, Peter R. Christopher*, \Vorcester Polytechnic Institute
\Ve deten11ine the edge-com1ectivity of cage:s, reguhtr g 「aphs of millim1111 order having specified girth. We show that cages of degree arc k-edge-connected.

39 A Heuristic Algorithm for Computing Optimum Core-Based Multicast Tree

Ping-Tsai Chnng, Long Island University

\Ve present a heuristic algorithm to compute Optimum Core-Based Multicast Tree (OCB1..IT). An OCB:V1T is defined as the shortest-path multicast tree with the minimum value of the avenige group :shctrc delay iu dgiven uetwork with H distinguish,xl m11ltica.c;ing norlc set. ThP. OC131IT prnblem hac, bePn stnrliP.r by Clrnng int.his conference (33CGTC) in 2001, where Chung sturlied two algorithms to compute 1:1.pproximations to OCBl'dTs. Both algorithms achieve approximation ratio of 2, 1hat is, they genera.tee! the average grn11p-share<l delay for an OCI31VIT is g11aranleed to he within or better than two limes an optimum group-shared delny for any weighted graph.

Il1 thi:s work, we μ reseut a 11ow approximation algorithm whid1 achieve:; approximnl.ion rnt.io of :V2 to an OCB.MT for any wdght.r.d grnph. We analyze the time complexity and address lhc possible applications of this new algorithm.

Travis R. Corik<\} Dr.bra Knisky, Teresa vV. Ifaynes, Enst Tennesse<i State .Universily

Unclerst.ancling RSA mokc:nlcs is importaut. to gcnomics research. Rccr.111.lv researchers at the Courant Institute of Mathematical Sciences used graph theory to model RNA molecules and provided a database of trees representing possible ::-econ<lary RNA :structure:;. They a.bu u:scd cigcuvaluc:, of these trees to help liud novel-RNA. In this paper we nse <lomination paranmt ers Lo predict whid1 I.recs arc more likely to exist in nature as RNA structures. This approach appears to h,we μ ronii :,e in grapl1 tl,eory application:, in ge110111ic; re:scar<'h.

41 Moore-Grieg Designs II

.Tarred T. Collius*, Norman .l. Finizio, University of Hhodc Jslmtd
l\Joore-Greig De:sig1i:s, a new cc1ss of l,lock desigm;, are ,e:solvable BIBD:s that pm;sr.ss a 1111mber of fa.c;cinating fr.at.nres. In this sr.conrl se ment of 011r inv< st.igation of these designs we discuss the designs in cornplete gencrnlily. \Ve also demonstrate the presence of infinite classes of generalized whist tournament designs having f^{r} actiolial frequc11cy.

42 Ternary complementa1-y pairs modulo 3

Robert. Craigen, University of I\Janit.oha
Tr.rnary complementary pairs arc sc\|ll< $\mathbf{\| C} \ll$'s wilh zero a11tocorrd,-1.tion , rnd cnt.rics $0, \pm 1$. They appear in the construction of Haclama.rd matrices, weighing matrices, orthogonal designs, radar, GPS, signal synchronization and range fi11ding npplication:s ill e11ginceri11g. They may 1iko l,e treated a.:; two poly110111iab J,g such that all $x^{\prime} \mathrm{s}$ in the expression $\mathrm{J}(\mathrm{x}) \mathrm{J}\left(\mathrm{x}^{-1}\right)+\mathrm{g}(\mathrm{x}) \mathrm{g}\left(\mathrm{x}^{-1}\right)$ ca11c.d. For rxampl<-, taking $J(x)=1+x^{2}, g(x)=1+x-x^{2}$, we h,we
$f(: i:) J(: t:-1)+9(: i:) y(: 1:-1)=\left(I+t^{2}\right)\left(I+: i:-^{2}\right)+\left(1+: ;:^{2}\right)\left(1+:,,-1-.,,^{2}\right)=!i$.
Constructing a complete theory of their structure has been problcmatic---they appear too sporadic.

It has recently been show11 that ignoring the sid1 by regarding the sequence:; (or polynomials) morlnlo 2 gives a t.rnct.ablc theory of strnc:t.mc, c:oarsly 011t-i11in Ihe structure of the general case. Ju this talk we explore the corrcspo11di11g approach modulo 3. In this case we not only obtain a liner approximation to the desirr.d :st.rnct.me, hut we abo get nicthods that. ci.ll con:;;trnct. (ordinary) ternary co111plementary pairs directly, something not yet found in the 1110 d 2 cnsc.

43 On the Non-Existence of Planar DSS
Larry Cummingfi, Univerfiit.y of Waterloo

A collection of no11-trivial <lisjoi1 it suhsets of Z_{n} with the property that all 1101H1ero elements of Z_{n} call be represented as differences of elements from distinct sets is called a difference system of sets (DSS). General DSS were first introduced by V. I. Levem;htei11 in the context. of systematic co1111mif ${ }^{\text {r }}$ ee codes. The ca8e for two fiCfi had been fitu<lie<l by D..T. Clague. For arbitrary finite alphabets we prove that if the union of sets in a DSS forms a ($\mathrm{v}, \mathrm{k}, \gg$.)-difference set and they differ in size by at most one then \gg 1 .

Keywords: Difference Systen1s of Sets, commet-free codes, ($-\mu, k,$\)-difference sets

44 Average Distance and Eulerian Gra hs

Pct.er Dankclmann*, David Erwin, Ilcnda C. Swart., Univernity of KwaL';ulu-NataL South Africa; Refael Hassin, Tel Aviv University, Israel

The average distance of a connected graph C J = (V, y) is defined as the avcrage of the distances between all pairs of vertices.

In this paper we determine lower bounds on the average distance of an eulcrian graph of given or<ler n and fiizc $n+k$, where OS k S ($n-3$)/2. For given k and large n our bounds are best possible up to a small additive constant.

As an application we consider the problem of a<lding k edges, 0 SkSG) n to a cycle of le11gth n to obtain a graph of s111allest possible average distance.

45 On the Total Influence Number of a Graph

Sean Daugherty*, Jeremy Lyle, Renu Laskar, Clemson University

On a graph $\mathrm{G}=(V, E)$ we introduce a parameter called the total influence number, 17--(G). This is a 11atmal extension of the graph para111eter known as the injfoence mimher, $r y(G)$. The influence number of a set. $S \forall V$ is $r(S)=L u S^{1 / 2 \mathrm{~d}(\mathrm{a}, \mathrm{s})}$ where $d(11, S)$ is the distance from tt to closest member of S. The influence number of a graph is $17(\mathrm{G})=$ maxscv $17(\mathrm{~S})$. The total influence number of a set considers all possible di:,tct11cc:;: $\operatorname{itr}(S)=$ LuES $I ; 1_{1}^{1 / 2 d(u, v)}$. The total influence number of a graph is $\mathrm{TJ} \mathrm{r}(\mathrm{G})=$ maxs ; y TJ'r(S). ${ }^{118}$ In this pa.per, we explore general properties of and theorems related to the total influence number. We also show how to fild a 111axil111111 total i11flue11œe set on vcirions classes of grapl1s illd11<ling c:ompkt.e graphs, complete bipartite graphs, and paths. Thr concepts of
ilffllcllee alld total infhwnce get their mmle from •pplin1tions in psychology deeding with the romm11llication and powrr/influcnr:c in social net.workfi. Otl1rr npplirntions include facility location problems where the <1uality of service provided decays expommtially with respect to distci.nce.

Keywords: distance in graphs, influence rnunhcr, vertex i11dcpc1H.lcucc

46 Even-Balanced Bipartite Graphs and Intersections of Bipartite Star Designs

Kathryn L. DcLmnar*, LaGnmge College; D.G. Hoffrnnn, Auburn Univcrsit,y

In thifi talk we give nec:cfifiary and fillfficient. r:ondit,ionfi for !he existence or rw11balanced bipartite graphs an<l show how these graphs can be 11sed to solve the intersection problem for certciin bipartite star designs.

47 Desarguesian nets wit.bout, ovals

David A. Drake, University of Floridn

Let $\mathrm{TT}=T I(D)$ be the Desa.rguesian affine plane coordina.tized by a division ri11g D. An r-11.d. I: hrllr by lJ ifi the union of.,. parallel drisrs of lines or 11 A set. 8 of r points of $\}$; is called an oval or 1: if each two but no three points of S,ire collinear in I:. Necessary and sufficient conditions for n to hold an r-nct with oval are know11 for r 5 7. Assume that $\mathrm{r}=6$ or $7 \mathrm{an}<$ l, ill I.he $\mathrm{C} B \mathrm{C} \mathrm{r}=7$, thcit. D \# 2; nn<ler these ri.<;inmptions, we prove that Π hoklfi an r-nc1. without an ovril if an<l only if IDI 9 .

48 Planar Ramsey Numbers for Small Graphs
Andrzej Dudek, Emory University

The planar Ramsey number $\operatorname{PR}\left(\mathrm{G}_{1}, \mathrm{G} 2\right)$ is the smallest integer n such that every planar graph on n vertices contains either a copy of G_{1} or its complement contains a copy of G_{2}. So far, the planar Ra1m;cy nurnlien; lw.vc been dctenni11cd for t:0111plete graphs and cycles. By usi1g computer search and many lheoretkal results we found most of the planar Ramsey numbers P $R\left(G^{\prime}{ }_{1}, G_{2}\right)$, where G 1 and G_{2} belo11g to the set $\operatorname{Un}\{K, ., K$, - c, C,.. $\}$. Furthermore, lmsccl 011 the program $\mu \mathrm{L} 1.11$ tri devclope<l by G. ilrinkmmm and Il. McKay, we implement.e $<1 \mathrm{n}$ tool 1hat enables one to compute planar Ramsey numbers for any pair ($\mathrm{G}_{1}, \mathrm{G}_{\cdot 1}$) of 2-conucded graphs with at most 64 vertices.

49 Five or six properties of the numbers 5 and 6

$\, I$ Iat.thieu D11fom*, UQAl \backslash I; .lean I\I. Tmgeon, University of Montreal
If we m11ltiply a series of intP.gers all ending with 0 , or all ending with 1 , or all with 5 , or all with 6 , we get an integer ending with that same digit. i \backslash ow the numbers 25 and 76 h,1ve the same property, and so do 625,376 , and so 011 We shall explain how the :;cquences $\mathrm{Cll}\{\mathrm{lillg}$ with G or with 6 can he cxtc11dcd i11dcfinilcly, so that we get all solutions or the equation $\mathrm{x}^{\mathrm{n}}=\mathrm{x}$, for every integer n , where x is an integer -.vith infinitely many digits. We generalize to bases other than 10 .

50 A Network Topology With Efficient Balanced Routing

Diuny:;io:; Kuuntani:;, V,itsal Shanidbhai G,mdhi, \Va:;im El-Hajj*, Ghm;:;en Ben J3r,1him, •western Michigan University

In this paper a special network topology is considered in terms of how nodes should be interconnected. The considered network will be speci-ed by a graph $\mathrm{G}=(\mathrm{V} ; \mathrm{E})$, where Vi:; the :;et of nudes and E i:; tire :;et of links. We as:;mne that tire :;et V ha:; cardin, 1lity $\mathrm{j} V \mathrm{j}=\mathrm{k}(\mathrm{k} \mathrm{jl})+\mathrm{l}$, where k is" power of a prime nnmber. We de-ne a function $f: V!U J t V$ such that $j U j=k j l$. For each v $2 V$ we $-n d f(v)$. Following this approach, Eis de-ned by $f(\mathrm{v}$; $\mathrm{f}(\mathrm{v})$)jv 2 V g. According to om scheme, any two :;itc:; can co111nm1licc1te hy t.rnversing ex- actly 2 nodes regardless of the network si7.e. Contrarily to l.he existing ronting approaches where r011ting decisions are based on a large set of information du-
plicated at each site, the routing scheme we propose greatly reduces the si7.e of the i11for111;1tio11 set tlmt should be maintained , 1t each site.

Keywords: :'\et.work Topology, 13alance<l Ro11ting, Network Congestion, Vir-t.nal Toplology

51 Principles and Preliminary Results of Force-Directed

 Floorplanning..Jomrna Ellis-Monagha11, Tmnry Lewis, Greta Pangborn, St.. Michaels Collegr: Paul Gut.win, Cadence Design Systems.

A major component of computer chip design is generating an optimal netlist layout, i.e. determining where to place the gates (functional elements) and how to route the wires (cum1cction:; between gates) when mau11facturi11g a chip. Floorplanning, an early step in this process, <letermines a rough high-level grouping and locating of related gates within the chip area. The floorplan components are ge11ernlly nictangular of fixed area but not aspe<t ratio. They are al:;o higlily il1terc:onnected, but may not overlap in the layont. area. Thus, floorplanning involves

GutI, geometric and graph theoretical cu11sicle1•atiom; Floorplc11mi11g i c11n,11tly often donf by h,1.nd, bnt <lne to the highly competitive natmr of the microelc'r:tronics industry, there is strong interest in heuristics that may shorten the chip design cycle by automating this process. \Ve apply force-direc:Led graph drawing ted111iques to the lourplm111i11g problem, 111odifyi11g Lhel11 hy developing" pliy:-;ic,1l model Lhat allows components to pass through each other and ndjm;t aspect ratios as needed while approaching a solntion.

52 Simultaneous Flows in Multiple Networks

Alexander Engau*, Uorst v,r Hamacher, University of Kaiserslaut.crn

The development of network flow programming was originally motivated f^{r} om classical operations re:;earch ta:;k:; such ,is comnnu1iec1tion, t,ra11spurtntio11, prod11ctio11 or scheel11ling. However, it has also been fmmd that. a j;1ge nnmbr.r of oUwr combinatorial problems can frequently be formulated in terms of network flows. While :;uch problems call generally be embedded into the theory of linea.r progra111111ing a nnmher of benefits arises from a separate tre11tme11t and by making nse of the special network struc:Lure. In particular, many solution algorithms allow for a significant improvement with respect to complexity, running time alld required co111putil1g re:;011rces.

We st.ndy an integer program whose constraint. matrix can be partitio1wd into a collection of submatric:es that are consecutive one ill rows. Based on linear programming relaxation and duality techniques, this integer program is transfonncd into 11 ;i11111ta11euu; flow pruhle111 ill several u1Hledyi11g 11etworks thatt. ni-c rdntcd through a bijection on snbset.s of thfir rcspe<:tive arcs. Similar lo sim11llaneo11s Hows that have identical values on corresponding arcs in different. networks, 011e can study simultaneous tree problems, matching problems, etc. This new area minrd "simultaneons graph theory" will he suhjec:1- of fort.hcoming l111ivrsifify of I<aiserslautern working papers.

53 Path and Cycle Decomposition Numbers

Grady l3111lington, Linda Eroh*, Kevin l\lcD011g-al, IIosien l\fogha.dmn, St.even .l., Winters University of Wisconsin Oshkosh

For a fixed graph /f without isolated vertices, the H-der:omposition number $\mathrm{d}_{11}(\mathrm{G})$ of a grapl1 G is miu(IV(I<)I, IV(G)I) where I is all $\mathrm{f} /$-<lccmnposahle gnipl1 will i11d11eed s11bgraph G. Eq11ivalently, it is the minimum number of vertices $1 \mathrm{~h} / 1 \mathrm{l}$ must. be added to G , along with any number of edges incident with the new vertices, to produce an !/-decomposable graph. This parameter was previously studied by Kdl<'r, Vanci<'ll, anci \Vintc,rs. In this t.alk, we, prcs,, nt. c,xact. form11las for rl,,(G) in the cases where H is a path or a cycle and G is a path or a cycle. We prove a general lower bound which is useful in these cases.

Keywords: edge det:0111po;itio11, H-deco111posi1.ble, det0111positio11 11u111br

54 Latin Squares Based on Direct Products of Elementary Abelian Groups: a Progress Report

Anthony B. Evans, \Vright State University

It is well known that we can const met sets or pairwise orthogonal Latin squ<1res from the Caylcy table \backslash of a gro11p G, w,ing sets of pairwise acijaccnt. orthomorphisms of G. Restricting ourselves to g.roups of the form GF(q1)+ x GF(q2)+, we find that many classes of orthomorphisms of this group can be obtained by solving systems of clilforcnce equation:; il1 the ring of f1111ction; G F (q q_{l}) -> GF(q1.). We will cxami11P. some of these new d11sses of ort.homorphisms an<l their or1:hogonalilies. ${ }^{\circ}$

55 Sum Coloring on certain classes of Graphs

Gilbert Eyahi*, RCJm Laskar, Clclllson Univen,ity
An $\mathrm{J},(2,1)$ r.nlnring of a grnph $\mathrm{C}=(V, \mathrm{E})$ is a vcrtc, x coloring $\mathrm{f}: V(G)$-+ $\{0, I, 2, \ldots, k\}$ such thal IJ (u)-J(v)I 2 for all uv E E(G) and IJ(u)-f(v)I 1 if $d(1,1,1 \cdot)=2$. We refer to an $L(2,1)$ coloring as a coloring. The span $>$.(G$)$ is the s111allest k for which G has a coloring. A .pan coloring is a coloring whose great.est color is >.(C). An $\mathrm{f},\{2,1)$-r.nlnri.n_q f is a full-c:oloring if $f: V(G)->\{0,1,2, \ldots,>$.(G) $\}$ is onto alld f is an irreducible no-hole coloring (inh-coloring) if $J: V(G)$-> $\{0,1,2, \ldots, \mathrm{k}\}$ is onto for some k and there do not exists 11.1colori11g ff such that !(III) $\quad f(n)$ for , ill $n E V(C)$, mnd $y(-10)<J(u)$ for some v E $V(G)$. The Assignment sum off on G is the sum of, ill the labels assigned to the vertices or G by the coloring J. The Sum coloring nmmber of $G, 1$) G), is the 11linillull1 assignment sum over all the possible colorings of - f is a sum coloring on \mathbf{G} if its assignment smn equals the Snm rnlnrin_q mmhr.r. In this paper, we,
invcstigc1te the Sum colo1-ing nm11bc,s of certain classes of graphs. It is shown tic, $\mathrm{L}_{\text {, }}$ $L\left(P_{n}\right)=2\left(\mathrm{n}\right.$ - !) and $\mathbf{L}\left(\mathbf{C}_{\mathrm{n}}\right)=2 \mathrm{n}$ for all n . We also give, 111 c , xad. vain< for the Sum coloring number of a star and conjecture a hound for the Smn coloring number of an arbitrary tree T, not a star with max degree $\begin{array}{ll}6 & 2\end{array}$

56 Characterization of Digraphs with Equal Dominati n Graphs and Underlying Graphs

Kim A. S. Factor*, Marquette University: Larry .J. Langley, U11iversity or the Pacific

A domination graph of a digraph D , do111(D), is created using the vertex set of D and edge whenever or for any other vertex z . The underlying graph of $\mathbf{D} \mathbf{1 J G}(\mathbf{D})$, i; the grnph for which D is a hioric11tatio11. Using results ol>tai11c<l by Drigha111 and Dutt.on on neighborhood graphs, we c:harad.eri?.e symnwt ric cligrnphs whrrr. dom(D) $=U G(D)$. Building upon the case of sym.met.ry hy introducing bioricnt.atio11; of underlying graphs, we co111رletdy clmrac:tcrize digni.phs whose u11dcryi11g graphs are identical to thr.ir domination gr:iphs.

Keywords: <lomination graph, tm<lerlying graph, grnph $\subset \subset$ q11ality

57 Defining a Class of Computational Curves based on a Recursive Structure Graph
James D. Fac:t.or, I\larq1wt.tc, IJnivf
'Sit.y

Given a path of length n, a recursive algorithm based on the subdivision of each edge ill the path will be 11sed to <lfi11e a structure graph. This structure graph will capture the combin:it.orial, <:onnfctivity, ancl topological propertics of a welldefined framework into which it is embedded. Edges and vertices being mapped to links and joints, respectively, in space construct this framework. The lillst vertex placed by the algorithm is mappcci to a disti11g11ishc<I joint. As the frnincwork moves, ii is shown that the disting11ished joint sweeps onl a Bezier curve or degree n.

58 Counting Even Partitions and Selmer Group Elements

n. Fa11lkner*, K ..lames, Clemson University

A positive integer n is called a congruent number if there exist a right triangle
 <lefinr:d by, $\mathrm{E}_{\mathrm{n}}: \mathbb{1}^{\prime}=1^{3}$ - $11 . .1: 1:$ has infinit:dy many rational points if and only if n is a congruent number. One common way of bounding the number of rational points on such a curve is to study its corresponding "Selmer group". \Ve will give a de:.:criptio11 of all of the Selmer group::;, S.,., ill term:; of certain graphs. Suppose $\boldsymbol{n}=\boldsymbol{P} \boldsymbol{l} \cdots \boldsymbol{P}$ p; a prime for $1 \$$ i $\$ \boldsymbol{l}$, cfofine a graph $\boldsymbol{G}(\boldsymbol{n})$ in the following way. Let the vertex and edge sets of $\boldsymbol{G}(\boldsymbol{n})$ be defined as $\boldsymbol{V}=\{\mathrm{Pi}, \cdots, \mathrm{pt}\}$ and $E(G(n))=\{p \quad I(\ddot{\eta})=-1$
$1 \$ \mathrm{i}, \mathrm{f} \mathrm{j}: \$ \mathrm{l}\}$ where () is the Iengendre symbol. A partition of $\boldsymbol{G}\left(\boldsymbol{n}_{\mathbf{n}}\right)$ is an ordered pair ($\mathrm{Vi}, \mathrm{V}_{2}$) where Vi LJ $\mathrm{V}_{2}=\mathrm{V}$ and $\mathrm{Vi} \mathrm{n}_{\mathrm{V}_{2}}=0$. A partition ($\mathrm{V}_{1}, \mathrm{Vi}$) is 8clid to lie even provided thctt for any•,, $E V i, U\left\{v-+V_{2}\right\} \dot{i}$, even, and for any ${ }^{11} E V i$, $\mathrm{t}\{v-+\mathrm{Vi}\}$ is even. In Ihis 1alk a fornmlr1 for the size of the Selmer group is fo11nd by finding the dimension of certain subspaces of the null space of the Laplace matrix, defined by $\mathrm{f},(\mathrm{G}(\mathrm{n}))=\operatorname{dia} . \mathrm{g}\left(\mathrm{d}_{1}, \cdots, \mathrm{~d}_{1}\right)-\mathrm{A}(\mathrm{G}(\mathrm{n}))$ where $\mathrm{d} ;=\mathrm{L}={ }_{1} o_{i j}$ $(J \$$ i \$ A. and $(\mathrm{n} ; \mathrm{j})=\mathrm{A}(\mathrm{G}(\mathrm{n}))$, the adjacency matrix of $\mathrm{G}(\mathrm{n})$.

Keywords: Elliptic C11rve, Selmer Gro11p, Congruent. N11mber

59 Two generalizations of deBruijn digraphs

Miclmcl S. .facoh::;011, Arthur IL Busch, U11iven;ity of Colorado at Denver; Gua11tao Chen, Georgia State University; Ralph J. Faudree, University of Memphis; Michael Ferrara., Ronald .J. Gould, Emory University Nathan Kahl, Charle:; Suffcl, Stevens lm;t.itute of Technology; Ewa Kubicka, (;rezgon: Kubicki, l:nivcrsity of Louisville; Allan Schwenk, Western $1 \backslash$ •Iichignn University
V./e give a broad definition of a class of digraphs motivated by the well known de Rruijn digrapl1::. We u:-e two examples to <e111011;trate that the de Rruij11 digraphs can be c:onsid0.rc<l a a spec:ial case of this dass rlefine<l here and wr. consider two applications of other special cases of this class of generalized de Bruijn digraphs. First, we show how this class can be utilized to find all possible k-subsets of an 11-,et Next, we show tlrnt this dci.:;s of digraph::; can he m;cd to rcprc:;cut a dus::; known a.lphabcl.-ovP.rlap grnphs and show that I.hey are hamilt.onian.

Keywords: de Bruijn digraphs, line digra.phs, hamiltonian digraphs

60 Designing Fire Resistant Graphs.
St.nart Crosby, \wedge. Finbow*, n. IIartnell, Hmliil- $\$ Io11ssi, I<M.c Pnl frrson, l);mia Wattar, Saint Mary's University, Canada

We consider the following scenario: Let f clnd d be positive integers. 'Fi,es' bre,tk out at a set S of .f vertices in ,t co1111ected :.:imple gntph G (i.e., tle vertices of S are coloured red). Then the following set of events occnrs repcat.edly uni.ii all the vertices are coloured:

The 'defender' 'fireproofs' (colours green) d non-colo11rcd vertices (all of them if there arc less than ti) after which the fire sprcMls to all no11-colo11rc<l vcrl.icTs which are adjacent to any red vertex.

Let r be the final number of red vertices. For each set S of J vertices in G, m(S) is the 11linil1um vcllne of r taken over all defen::":.:.: For fixed f alld d, we wish, for each 11. to design a connectccl graph with n vertices snch that. the avrrng-c value of m .(S) (taken over all subsets S of cardim11ity J) is 11linil1111m Parti;1.l progress on this problem will be presented.

61 Moore-Grieg Designs III

farred T. Collins, Stephanie Costa, Rhode Island College; Norman J. Finizio*, UniYcrsily of Rhode fsland
l \backslash foorc-Cn::ig Designs, a new dh1ss of block de::;igus, ,ire resolvable I3II3Ds tliat possess a number of fascinating fea.tures. In this third segment of onr investigation of these designs we emphasize the presence of" nested" resolvable relative difference fa111ilies and 11e:-ted fin-tme:.:,

Keywords: RI3II3Ds, frames, rr:solvahlc relative difference families

62
 Wiener Polynomials for Recursively Defined Rooted Trees

John Freckrick Fink, Universit.y of :'viichig;an-Dearborn

The Wiener polynomial of a comHx:tcx graph G is $W(G ; q)=P\{u, v\} q c i(n, v)$ where the sum is over all unordered pnirs $\{u, v\}$ of distinct vertices in G, and $d(u$, $v)$ is the distance between u and v in G. Thus, $\backslash V(G ; q)$ is the generating function for the di:;t.am:c <listrilmtiu11 $\mathrm{d}<1(\mathrm{G})=(\mathrm{D} 1, \mathrm{D} 2, \ldots, \mathrm{Dt})$ where $\mathrm{Dk} \dot{\mathrm{i}}$; the 11umhor of nnordcreci pairs of dist.ind vertices at. ciistancc k from each other and t is the diameter of G .The derivative $\mathrm{W} 0(\mathrm{G} ; 1$) is the well-known Wiener index of G . For a specified vertex 11of a co1111ectod grapl1 (; the Wie11er μ ulynurnial of G relative tu 11 is the polynomial $\mathrm{W} 11(\mathrm{G} ; \mathrm{q})=\mathrm{Pv} n d(\mathrm{u}, \mathrm{v})$, where the snm is over all vertices v of G, including $v=u$. We discuss the Wiener polynomials for recursively defined trees, paying special attention to Fibonacci trees and complete dendrimers.

Keywords: Wiener i11dex, Vliener polynomia.l, <lista.nce, tree, Fil>o11acci tree, ciencirimer.

63 Edge Colored Complete Bipartite Graphs with Trivial Automorphism Groups

:'viike Fisher, California Staie University, Fresno; Garth Isaak, Lehigh University

Our work genera.li;,es results obtaine<l by l-farary ,v. facul>se11 a.ml by Harary \& Ranjan. Ilarary nnd .Jacobson examineci the minirnnm number of edges thal. neerl to be oriented so that the resulting mixed graph has the trivial automorphism group and determined some values of s and t for which this number exists for the complete hipartit.c graph K.,,t- Ju a follow up paper, Harary and H.anjau dct.crminP.ci fmther bol111ds on when some of the edges of K.,,,. arP. 11blc to bP. oriented so that the graph admits only the identity automorphism. Since we may think of such partia. 1 or.ieutations as 3 -edge colori11gs when s f l, it is natural to consider this prublc111 fur <-edge coluri11gs where $<\mathbb{Z}$ 2. In this paper, we dctcrmiuc the values of sand 1 for which there is an edge coloring of the complete bipartite graph $\mathrm{I}<\mathrm{s}, \mathrm{t}$ which admits only the identity automorphism.

Keywords: edge colorings, c1utomurulis111 groups

64 Fullcrenes and nut graphs

Pnt-rick Fowler*, Cnivei-sit.y of Exeter, UK; Irene Scir.ilrn, University of I\lalta

Fullerenes are all-carbon molecules with trivalent poly\}iedral skeletous, haviug 12 faces pentagonal and all others hexagonal. :',[any questions abo11t their chemistry can he cast in graph-ihcorctind form. This talk <le,tls witli follcrencs whose skeletons are nut graphs: a nut-graph has exactly one zero eigenval11e in its adjacency spectrum and no zero entries in the corresponding eigenvector. In chemistry, this specia.l eigenvector currespon<ls lu a uu11-l>undij1g orl>ital .iml has implications For ele<tron dist.ribnt.ion mla reac:tivit.y. Some propert.ies of n11t-fllllcrN1cs nm! c:onstruciions for the graphs will be discnssed.

65 Self-assembly graphs from pat.hs

G. Franc:o*, A. .lonoska, Univ<'rsily of Sonth Florie-la

In DNA nanotechnology it has been shown that 3D DNA structures can be selfa.isse111bled experimentally; fur exa111ple, the cul>c, the idrahcdruu, cUH.l even 11011regnlar graph st.rnct.nres have heen ohtainc\cl. This work proposes a 1.lworc1ical model to study possible graph structures obtained by self assembly from a given set of single-stranded D NA molecules.

Given a collection of <lircctcd paths and cycles with vertices lal>eled full1 7, $=$ $\{\mathrm{a}, \mathrm{t}, \mathrm{r}, \mathrm{f} /\} \mathrm{k}$; where k is a fixed positive integer, we acid n matching set of 1111 d rected edges such that two vertices are incident wit1 Ihe same edge only if they have complementary labels. In order to obtain a graph which rcprcsent.s a self asscrnhlcd DNA struct.nrc, the umt.ching set mu:;t respect. certain con:;;1raints ddincd by mPans of n set of forbiciden s11bgrnphs.

We present a general model and simple examples for building snch graph stnut11r<'s from a collection of directed paths and cycles, while respect.ing the constraints of furbi<ldcu suhgntphs. We conclu<le with some open problems.

Key words: DNA Compnting, SeH Aiisembly, Forbiclding-Enlorc:ing S_yst.cms.

Dalibor Froncek, University of Minnesota Duluth
An orthogonal double cover of the complete graph K_{n} by a graph G is the set of n subgraphs $\mathrm{G}_{.1}, \mathrm{G}_{\mathrm{f}}, \ldots, \mathrm{G}$, . of K ,. with the followillg properties:
(1) G hac, $11 . \quad 1$ eclges nnd $C_{i} \ldots$! G for every $i=1,2, \ldots, \cdot 11$;
(2) every edge of $K_{I I}$ appears in exactly two copies of G (double cover property);
(3) every two distinct copies $G ; \mathrm{G}_{\mathrm{i}}$ of G intersect in exactly one edge (orthogonc1lity property).

Gro11a11, $\ \!I u l l i 11$, cl11d Rosa conjectured that. for every tree T with n vertices except for J_{A} there exists an ODC of K_{n} by 1.' They also proved the conjecture for all caterpillars of diameter 3. Later, Leck and Leck proved it for all caterpillars of dic1.meter 4 aml cll trees with up to 14 vertices. We prove the conjecture for $1: 111$ c11.rcrpillars of rlimncter !i and order n 2-1; for orders $1!i, S l .23$ we prove it with several exceptions, which we believe are only temporary.
The method we use is a common generalization of methods developed for ODCs by Grona11, l\Iulli11, and Rosa and by Leck and Leck and for complet, e graph factori-:ations by Tcre,m Kovnrov11, who presenteel them here n year ago. If time permits, we also mention further generalization that is useful for caterpillars of small orders. We believe that this will help 11s to settle the missing cases.

67 Constructions for anti-mitre and 5 -sparse Steiner triple systems

Yuichiro Fujiwara, Keio University

A Steiner triple system of order 11 , briefly STS(v), is an ordered pair (V, B), where V is a finite set of l eltirnents called points, and 8 is a set of 3-elelle11t subsets of V cl1lled hlorks, snch thilt. cl1ch unordered pnir of clistinct clements of V is cont11inccl in ex11.ctly one block of $!3$. A (k, l)-conflgnralion in an STS is a set of l blocks whose union contains precisely \ddagger points. The uniqne $(6,4)$-configuration is called the Pasch config-umlion. The m:ilrc is 011c of two (7,5)-coufiguratiom; which contains no l'm,r.h confignrntion ac its snbsl.rnct.nrc. An STS is said to be 11n1.-mifre if it contains no mitre configuration; and it is 5 -sparse if it contains neither Pasch nor 111itre co11fig11ratio11.

111 this tnlk we prcseut 11ew coustructiolls for ,111ti-111itre STSs aud 5-sparse 011es By virtue of the constructions for anti-mitre STSs and known results, we can construct anti-mitre STSs for over 13/14 of the admissible orders. For 5 -sparse STSs, we give a co11strudio11 which extends substantially the spcctrnrn of known such syst.cms.

68 On the Extension of an m-sct Family
.Jnnirhiro F'Hlrnyama, I11rliana State Uuivcrsif.y

Let $n, \mathrm{~m}$ and l be positive integers such that $\mathrm{m}<l, S n$, and U be a family of m - ets, each element of which is chosen frolll [n], i.e., U E ($\mathrm{f} ; \mathrm{i}, \mathrm{I}$). The l-e:tl,:n.,-i.on $\operatorname{Ext}(U, I)$ of U is ddinc<l by

$$
\operatorname{Errt}(U, l)=\{\varsigma \mathrm{E}(7) \text { /11 E U , IC s }\}-
$$

It hils been pointed ont that. the, extension is closely $\mathrm{r}<$ 'latcd 10 the well-known open problem called the Isometric Problem for m-sels.

In this paper, we will show that

$$
\mathbf{F} ; \times t(\boldsymbol{U}, ו) \mathbf{I}^{2}\left(\frac{1}{l}\right)\left(1-\exp \left(-\frac{(l-\mathrm{m}) \mathrm{ll11}))}{(;)}\right.\right.
$$

This bonnd is nsefnl for small m snch as 2, allll illlplies the followi11g dairn: Let G be all n.-vertex gniph whose edge silc is $\mathrm{n}(, \mathrm{t}-\mathrm{k}$. Then, there are 1 lt 1110 t

Keywords: Extremal Set Theory, Isomclric Problem for m.-sets, Han11ning Space, Hamming Distance, Shadow

69
Minimizing the Number of Constraints in an ILP Model for Tournament Feedback Arc Sets

Ryan Fuller*, Darren A. Nc1n1y,1n, Rocl1cstcr lrn;it.nt.e of T<!lchnology
We consider the following question: Given a set of n players in a round robin tournament, what is the smallest sized tournament for which there exists th opl.irnal nmking where each of fllc origin,il 1 . plciycr:s ,u.c pci.irwise m11ked w1011g! We i11vcstig11te this probl $<m$ 11sing methods from grnph theory ancl infr.ger progn11nmi11g. Given an acyclic: digraph D we seek a smallest si7.ed to11mame11t T that has D as \mathbb{C} minimum feedbc1dk arc set. The reversing- number of a dign1ph, -r(n) cquals IV (T)-V(D)I- lsa11k nnd Nam.ym1 formulat.c,d 111linteger linear progrnni, ILP(n), whose optimal value gives the reversing number or a tournnment. It turns out that. in many cases, several of the constraints can be n $\bullet m o v e d$ with no effect on the objective value of $\operatorname{ILP}(n)$. We investigate various subsd.s of co11strai11ts when• the objcctivr. valnr. is the smne a, if it were n1lc:nlatt>d over the foll set of c:onstrainl.s.

Keywords: feedback arc set, tournament, i11trgcr linear program

70 (0, 1)-matrices with Constant Row and Column Sums

Slrn.n7.hen Gao*. Ildnrich Nicxkrrn.11se11, Floricla Al'lant.ic Univn-sit.y: Zhongh1rn Tan, Guangzhou Gongye Cnivcrsity, China

L d $f_{m}(111$, 11) he lhe nnmher of $(0,1)$ - mat.rices of si;;e $m \times n$ snch that each row has exactly s ones and each column has exactly l ones ($\mathrm{sm} .=n l$). How to determine f.,,t(m, n.)? As R. P. Stanley observes (Em1men;1tive Combinatorics I (1997), Example 1.1.: 0 the <letennination of $\mathrm{f}_{\mathrm{s}}, \mathrm{t}(\mathrm{m}, \mathrm{n})$ is an unsolved problem, except. for very small $s t$. Iu this paps>r we give mths>r involved c:losed formn-
 genen, 1 ting functions clnd present several instructive reformulations of the problem.

71 Domination Cover Pebbling

James G,1rdner, ETSU

Given a configuration of pebbles on the vertices of a graph, a pebbling move is defined by removing two pebbles from some vertex and placing one pebble on an adjacent vertex. We introduce domination couer pebblin ${ }_{\mathrm{g}}$. The <lollinatio11 cover pebbling numbm; $1 \mathrm{j} ;(\mathrm{G})$, of a graph G is the minimum number of pebbles 1 m dor any configuration such that after a sequence of pebbling moves, the set of vertices with pebbles forms a dominating set of G A brief overview of pebbling and basic rc:;ult:; of dorniHation cover pehhliug will he givc11.

72 On $P(a) Q(b)$-Super Vertex-graceful Tree

Sin-Min Lee, Anupam Geng*, San Jose State University
Given integers $\mathrm{a}, \mathrm{b}>\mathrm{I}$, a graph G with vertex set $\mathrm{V}(\mathrm{G})$ and edge set $\mathrm{E}(\mathrm{G})$, $\mathrm{p}=\mathrm{IV}(\mathrm{G}) \mathrm{I}$ au<l $\mathrm{q}=\mathrm{JT}$..:(G)I, is said to he $\mathrm{P}(\mathrm{a}) \mathrm{Q}(\mathrm{b})$-:mper vertex-graceful (i11 short $\mathrm{P}(\mathrm{a}) \mathrm{Q}(\mathrm{l})-\mathrm{SVG}$,$) if them exists a fnnction pair (f, \mathbf{j}+)$ which assigns integer labels to the vertices and edges, i.e.,
$\mathrm{f}: V(G)-, P(a)$ and $j+: \mathrm{E}(\mathrm{G}) _\mathrm{Q}(1)$ are onto, $j+(u, v)=J(u)+f(v)$ for any $(\mathrm{u}, \mathrm{v}) \mathrm{E} E(G)$, and
$Q(b)=\{ \pm b, \pm(b+l) \ldots, \pm(b-1+c i / 2)\}$, if d is even,
$\{0, \pm b, \ldots, \pm(b-l+(\mathrm{ci}-1) / 2)\}$, if d is od <1,
$P(a)=\{ \pm a, \pm(a+1) \cdots, \pm(a-1+p / 2)\}$, if p is even,
$\{0, \pm \mathrm{a}, \pm(\mathrm{a} .+1) \ldots, \pm(\mathrm{a}-\mathrm{l}+(\mathrm{p}-1) / 2)\}$, if p is odd.
\Ve clcicrmine here da.s:;e:; of tree:; that are $\mathrm{P}(\mathrm{a}) \mathrm{Q}(\mathrm{b})$-super vertex-grc1.ceful for ${ }_{\text {os }}=2$.

73 Hamilton paths in graphs whose vertices arc graphs

Krystyna T. I3ali11slm, Kr7.ys;;;tof T. Zwier;,;ynski, Technical University of l'o;,;nai'1, Poland; Michael L. Gargano*, Louis V. Quint.as, Pace Cnivcrsit.y

Let $\mathrm{U}(\mathrm{n}, \mathrm{f})$ denote the gni.ph with vertex ;"ct. the set of mdi.tl>ekd gn1 μ hs of order n and having no vertex of degree greater than 1 . Two vertices H and G of $U(n$, f) are adjacent if ilnd only if Hand G differ (up to isomo1-phism) by exactly one edge. The proble111 of leten11i11i11g the values of I cl11d f for which $O(11, f)$ cont,Li11; a Hamilton path is investigat.ecl. There arc only a fow known non-trivial cases for which a Hamilton path exists, namely, for $U(5,3)$, 1.- $(6,3)$, and $U(7,3)$. On the other hand there are many cases for which it is shown thal no Ilantilion path exists. The complete ;ol11tio11 of this prohlc111 i; uarcsolvcd.

74 stratified Domination in Digraphs

H.alncca Gern*, Ping Zhm1g West.cm l\lic:higan University

A digraph i:; 2-:;tratified if its vertex set is partitioned into two cla scs, where the vertices in one class ;ire colorc<l reel and those in the other class arc colorecl hhH'. Let F be a 2 -strntified digraph rooted at some blue vertex v. An F -coloring of a digraph D is a red-blue coloring of the vertices of D in which every blue vertex 1 ! belong:; to d copy of F rootc<l at v. The F-dolllinat.ion 11u111br i; I.lie 111iliil111111 nmnbtr of red vertices in 1111F-coloring of I.). We present. some results ill this area.

75 Bounds on the Domination Number of a Graph

fly Ge1111 (;. Chappell, .John (;imbel*, Chris Ha.rtman, University of Alc1ska

Let G be a graph with au ordered set of vertices and maximum degree 6 . The dominc1tion number $-y(G)$ of G is the minimum order of a set S of vertices having the property that each vertex uot in Si:; adjacent to ;0111c vcrt.cx iu S. Eq11iv,1h:11tly, we can label the vcrtic:es from $\{0,1\}$ so Ihat. the snm over each dosecl neighhorhood is dt least one. The minimum value of the sum of all labels, with this restrictiott, i;; the do111hlclio11 nt.mtbcr. Tlie flc1cio11al đo111inatio11 1111111br $1^{*}((;)$ i.; cldincd ill the same way except. that the vertex labels arc chosen from [0,J]. Let g; (G) be the approximation of the domination number by the stamlnrd greedy algorit:hrn. Using techniques from the theory of hypergraphs, we obtain for !.:, 2, -y(G) :.: -y(G) S $1 \mathrm{~g}(\mathrm{G}) \mathrm{c}(\log 6) 1^{*}(\mathrm{C})$. Herc, c is some constant. Wc di:;cuss thcsc ho1111ds and sharpness.

76 A Physicist looks at Graph Isomorphism
I3ryant Gipson, Ilmnboldt. St.ate University

Complexity theory lws shown tlmt the μ rolle111 of 4den11i11i11g graph isomorphis111 falls bctwer. P 1md NP-Complr-f;e. A1111yy;ing degree sea11ences, dim11etcr, nmnber of components an $<$ other relational invariants of a graph reduces the si7,e of the cla:ss of graphs for which au $\mathrm{O}(\mathrm{N}!)$ search 11ed be done. C0111p11ti11g the eigc11val11es for 11 g 11 h ml trix gomemte-l by 11specific: vertex llheling nm-rows the problem further. Cmrently the computationally worst case scenario is that of the relatively rare class of cospectral graphs (non-isomorphic graphs with the same eigenvalues) witlii i<lcnticctl degree sequence,,. Drawi11g from the theory ofOmmt11111 Computing, 11 polynomial time 11nilly operaf.or 1ermed the "Level opcrnf.or" for gr11phs is introduced and its various properties are illustrated -specifically with regard to its use in distinguishing cospectral g 「aphs alld further reducing the set of graphs for which isomorphism must be exh,lnstivdy compnte<l.

Keywords: cospect.rnl, eigenvalues, gr1ph operators, (fl)a11tmn physics, graph isomorphism

77 On the nonexistence of a $(176,50,14)$ difference set

Oliver Gjoncski*, Ent.es College; Ken W. Smith, Cent.ml Illichig11n University

The Iligm11n-Sims symmetric. design with p11mneters (171>, iO, 11) is 11nimporta.nt combinatorial structure of interest to mathematicians because of its large sporadic automorphism group, in addition to the recently discovered rich tight subdesign strnctme. The existence of the Higman-Sims design raises the question as to the existen('.e of a <lifforence se1. with these. p11rameters. The sear('h for $11<$ lifferenc.e set with these parameters historically has focused on the five abelian groups of order J76, and even then the results have been difficult. The connection of a nonabelia.n simple grollp with these parnmet.ers s1Jggesf:s th11t one shoH1<l look more carefnlly at the remaining 37 nonabclian groups of order 176. We will use a wide arnly of techniques to eliminate the possibility of a difference set in all the groups of order 176,

78 Probabilistic Aspects of Graph Pebbling and Cover Pebbling

> Anant Godbole, East Tennessee State University

There has been a recent spurt of research activity in the area of graph pebbling and graph cover pebbling. h1 this talk, we focus on a new probabilistic dcvelopn1ents: What is the cov<r pebbling threshold fort.he complete grnph? A snrprisingly sharp
a11swer is obtai11ed bot1 for $\ \backslash$ laxwell-Bolbmm1111 and Bose-Ei11st.dn pebbling, with the golken ratio playing a key role. All 1 k t.frrns used in the al>ovf a.bstrnct. will be defined as pnrt of the t.ilk. This is joint work with Nathaniel \backslash-Vntson um! Carl Yerger.

79 A Non-Unit F ree Tetrahedron Order.
 Ashifi Gogo*, Barry Balof, Whit.man College

A free tetrahedron or<ler is a parti,tlly ordered :;ct for which each ee111e11t can be identifie<l with a tetrnhe<lron snch that. all tctrahedrri have one vertCX on each of three parallel baselines and a fourth f^{r} ee vertex between tlu: three lmsclines. Two tetrahedra i11tersect if and only if their corresponding clements are i11compan1.hlc and the tetrahedra preserve the or<lcr ol' clclllc11ts t.lmt arc cornpan1hlc. Free tef.rnh ${ }_{e}$ dron orders an 11generali;;;11fion of interval and trape?:oicl orclcrs and are 11 special class of ($\mathrm{n}, \mathrm{i},!$)-tube orders. A unit free te.trahedron order is one in whiCh all tetrahedra have the sal11e volume. A proper free tetrahedn111 order is one ill whirh no tetr11hcdron complctdy c.ontains another t.drahc,dron. We settle the 11nil versus proper question for these orders by finding a proper free tetrahedron order thnt docs not have a unit free tetrahedron represcntnlion.

80 Maximum Size Antichains in C OLEX

John Goldwasser*, Yongbin On, \Vest Virginia University J\ttila S,1.li, Jlungurian Academy of Sciences

We define the order COLEX 011 the :;et $\mathrm{P}(\mathrm{Z}+$) of all [iuitc subset:; of the prn;itive integers by $\mathrm{A}<\mathrm{B}$ if A is a proper subset of B or if the largest. element in A but not in Bis less than the largest element in B hul not in A.So $\{2,3,6,8\}<\{2,7,8\}$. We 4c11atc the first 111sets in COLEX oil $\mathrm{P}(\mathrm{Z}+)$ by $\mathrm{C}(111)$. A collection T of::mb:scts of 11set is 11 n 11 ntichain if no set in T is 11snbsct. of any other. $W \leqslant=$ find a formnla for the maximum size of an antichain in $\mathrm{C}(\mathrm{m})$. The fonnul11 is in terms of a sum of binomial coefficients related to the cascade fonn used lo cak:ulatc the size of the shadow oft.he first m sets of :;iilc k in the COLEX order. T11c special Cirsc when m is Cfflllll to a powrr of is Sperncr's theorem.

Keywords: COLEX, antichain, Sperner's theorem

Starting with the alphabet $\{0,1\}$ and then ihe la.ngnage $A=\{0,01,11\}$ over this al μ habet, we fij1d that the $11 \mathrm{ml11br}$ of string; of length I ill A* is given by the n -th .Jac:obsthal nmnber.$J(n)$, where $.1(0)=1, .1(1)=1, a n<1 . J(n)=.1(n-1)+2^{*} .1(n-2)$, for $n>1$. In this presentation various properties of these strings are examined an<l enumerated. These include (1) the total number of O's and l's that occur among all the strings of length $11,(2)$ the m1111br of r11m, that occur among 1111the string:; of langf.h n ; an<l() fhe n11mber of l1wels (0 followe<l by 0 , or 1 followed by 1), rises (0 followed by 1), and descents (1 followed by 0) that occur among the string:; of length 11

82 Super-simple 2-(b, fi, 2)-dcsigns
Hans-Dietrich Gronau, "Cniversity of Rostock, Germany
 IJ is a collection of k-element subsets of V calied blocks such that every pair of points is in exactly>. blocks. A (v,k,>.)-dcsign (V, B) is super-simple if any two blocks intersect ill at tnost 2 points. The concept of :,mper-simule designs wa introdm:c<l by Mnllin an $<$ Gronan in rnno. In the talk we study f.hc spect.rnm of super-simple ($v, 5,2$)-designs. We show that a super-simple ($v, 5,2$)-design exists if and only if $v=1$ or $5 \bmod 10$, except definitely when $v=5,15$ and possibly whe11 $\mathrm{v}=7: \mathrm{i},!55,1.15,133,1!J 5,21 \mathrm{G}, 2: \mathrm{n}, 285,3 \mathrm{G}, 385,51$:i, what b joint work with Kreher and Ling. We add rcsnlf.s by Hartmann on f.he asympf.of.ic exisf.cnc:e ol' super-simple designs and new results by Abel and Ling, who excluded a few cases ill doubt.

83 Construction of a family of uniform central graphs with small diameters

Sul-yo1.111g Choi, Le $\ \backslash$ tloyne College; Puhua. Guan*, University of Puerto Rico
A graph is calied a uniform cen1m1 graph if i1s cen1-ral vertices have a same $s<1$ of eccentric vertices. We show that the conjecture 'if a graph wilh radius r is un-ifoml. cenlral, then ils diameter is at lcasl $r+[(\mathrm{r}+1) / 2]$ is not true by co11sf.rncting a family of 11niform central grnphs with radius $\mathrm{r}(2.1)$ and diamct.cr $r+\mathrm{m}(1 \quad \mathrm{~m} \quad[\mathrm{r} / 2])$. This can be generalized to a construction of a uniform central graph which has a given graph as its center.

Keywords: eccenf.ricit.y, u11iforn1 central graph

84 Extensions of Rado Numbers to the real line
Caitlin Brady, H.nth IIaas*, Smit.h College'
Given an equation L, its Rado number, $L(n)$, is the least integer such that in every coloring of $1,2, \ldots, L(n)$ with n colo,-s there exists, 1 mo11ochn>mc1lic solution Lo the eqnatiou L. These m11nhers have been si11dicd for ndally equation:; by 111ally authors. Here we extend this idea io coloring fhe rea1 line. In parlic:11lar, we prove that $\mathrm{t}=\mathrm{y}\left(\mathrm{m}^{2}-m-1\right)+(m+1) \mathrm{c}$ is the least. real number such tlrnt in every 2-coloriug of the real mnubers $[y, t]$, where y is a positive n;11 1111111ber, there exist;; a monoc:hronrntic solntion tor $+\mathbb{1}_{1}+1: 2+\ldots+\mathfrak{l}^{\prime}-1=\mathbb{1}_{\mathrm{m}}$ where $-\mathrm{r}:<\mathrm{y}(\mathrm{m}-2)$.

85 Weak Independence Numbers for Grid Graphs

Tfeiko Harborth, Tl! Rnrn11:;cl1weig, (:cnwrny
Whal is ihe maximnm mtmber of mnrk0<1 sqnares of a d1C'ssboard snch thal. each marked square has common edges with at most k other marked squares $(\mathrm{k}=0,1,2,:\{4)$." The sase $\mathrm{k}=: \mathrm{i}$ rernains opm1 since it requires the nnknl>Wn do111ination nnmber for grid grnphs. (Common work willl l!C'iko .Dicf.ric:h)

86 Trees with equal domination and restrained domination numbers
J. H. T-fo.tt11gh*, Georgia State l:niver:;ity; P. Da11kd111;11111, i\l.A. le1111i11g lf.C'. Swart, UK:\'Z

Let $G=(\mathrm{V}, \mathrm{j} ;$) be a graph. The set S is a dominating set (DS) if every vertex in $\mathrm{V}-8$ is a.dja.cent to a vertex in S . Further, if every vertex in $\mathrm{V}-8$ is also adjacent to a vertex ill $V-S$, then Si :; a restrained dorninntiug sci (H.DS). The do111il1,1tion11 number of G, denoted by $7(G)$, is the minimum $c ;:$,rclinality of a DS of G, while the restrained domination number of G, denoted by $1_{r}^{\prime}(G)$, is the rnininnm1 cardinality of a RDS of G. The graph G is 7 -excellenf. if every vertex of G belongs to some minimum DS of G. A c:onstrnc:tive c:harnc:tcri,1ation of trC'cs with <'qnal domination and restrained domination numbers is presented. A a (onseq11e11<'c of this cha.ra.cteriza.tion we show that if T is a tree, then $7(\mathrm{~T})=\tau_{r}(\mathrm{~T})$.if ${ }^{\mathrm{f}} T$ is a 7-cxcdlent. tree.

Keywords: resfrn.inerl, domination, excellent.
$\mathbf{8 7}$ Counting rises, levels and drops in compositions with parts in a set A

Silvia I-Ieubach*, California State "Cniversity; Toufik Mansour, University of lfaifa, Israel

A romposition of $\mathrm{n} E\}^{\prime}$ is n or<lerecl collection of one or more posit.ivc integers whose sum is n. A palindromic composition of n is a composition in which the summands are the same in the given and in reverse order. The number of summol11d:; i; called the uurnber of part:;. We derive the generating function for the number of parts, rises (snmman<l followed by a lmger snmman $<$) , levels (a summand followed by itself) and drops (a summand followed by a smaller summand) for a general set A, and are able to derive all previously known results as special ca..;c;:. We abo derive uew rcs11lt; for Carlit:t cornposition:; (no adja<;ent ;; unumutd; can be the same) and for partitions.

Keywords: Composition, Palindromic compositions, Carlitz compositions, partitions, generating functions.

88 Semiregular Factorizations of Graphs
A..1.W.Hilt.on, University of Rc r!ing, England

A ($\mathrm{d}, \mathrm{d}+1$)-graph is a grnph in which the degree of each vertex lie:; in the set $\{r, r+1\}$. Such a graph is sometimes c.llcd scrnircgnlm. An (r,r+l)-fa.c:t.ori;r,ation of a graph G is a decomposition of G into edge-disjoint ($\mathrm{r}, \mathrm{r}+\mathrm{l}$)-factors.

Let r and s be given positive integers. We show that there is a number $D(r, s)$ so thc1t if G i; a simple graph with 111illimum degree d and maximum degree $d+s$, and if $\varangle>D(r, s)$ then G has an (r,r+l)-factori;r,ation. We also obtain bonnds for D (r, s).

89 Gregarious 4-cycle decompositions of some complete multipartite

graphs

Eli;r,ahct.h .l. Ilillingt.on, The Univ0rsity of Q11ccnsland; D.G. Iloffman*, A11h11m University

A 1rcycle in H c:omplct. 0 m11ltipartit.c grnph is said to he gregarious if its fom vorLices lie in different partite sets. Determining which complete multipartit.e graphs admit a 4-cycle decomposition is relatively easy; but if we insist each 4 -cycle in the deco111po;;itio11 be gregc1rio11s, ihe problem become:; ;11rpri:; i11gly thorny. Here we set.tie the cHse where at most. one part, is of a <liffere11t sile from the n st.

90 On the Shields-Harary Numbers of a Tree
J. Jiollicl ${ }_{\mathrm{a}}^{\mathrm{y}}$, S. !Iolliday*, University of Tennessee ,11 Martin; P. D. Joh11son, .Jr. Aub11rn Univcrsily

The Shiclds-Uarary graph pan1mct.crs are measnrcs oft.he rohnst.ness or integrity of a graph. These parameters arose from a problem of the late Allen Shields, reconstrued in a a graph theory setting by Shields, uid Frank Harary in 1!)72. In this paper, we will give :;0111cresults about. the Shiclds-Ifon:1ry number:; of trees.

91 Broadcast Covers in Graphs

J ('an H. S. 13lir, St.eve Hort.on*, Unit.NI St.at.cs .VJilit.ary Aca,Jr,my

A broadcas 1 covc1. i :; a integer valued fu11dio11 f 011 the vertices of a graph sl1d1 that. ev0ry r. $\langle\mathrm{lg} 0 \tau w$ is <listance at most $J(v)$ from some vert.<x $v \mathrm{E} V$. WP. din regard the vertices v with $f(v)>0$ as broadcast stations, each having a transmission power that might be different $f^{r} \mathrm{OH}$ the powers of other stc1io11:; \Vheu $\mathrm{f}(\mathrm{F}) \mathrm{s}$; 1 this is the stanclard vert0x cov<'r problem. The optimal broadc:ac; cover problem seeks a broadc::ist cover tlrnt minimizes the sum of the costs of the bro::idcasts assigned to the vertices of the graph. We present a theorem about the nature of broadcast cover:; that c:;tabli:;hes d poly11omic1I til11e algorithm for the prohlc111 011 arbitrn.ry grnphs. We also <lisc11ss the broadcast. <lornination problem and some int.cresting relationships between it and broadcast cover.

Keywords: vertex cover, algorithms, broadcasts

92 Locating and Total Dominating Sets in Trees

Teresa W. Haynes, East Te1111cs;ee State 1;11iversity: Midwcl A. Ilcnning, University of Nata.I, South Africa; Jamie !\I. Howard*, Indiau River C'omnrnnity College

A set S of vertices in il graph $\mathrm{G}=(V, \mathrm{~J}:$) is a total dominnting set of G if every vertex of V is adjacent to a vertex in S Total dominating sets of minimum car<linality which llave the ad<litiom1.I property that disti11ct subset.:; of V are tol;illy <lominate<l by distinc:t. s11bscts of the tot.al <lomilrnting sci' arc consirl<rcd in this talk. The concepts of a locating set and a total dominating set arc merged to define two new para.meters. In addition, bouuds on these parameters in a tree are pre cntcd ,lud the rntio of the:;c parn111etcrs ill tree:; i:; investigated.

Keywords: difforcntiating tot.al <lominating set, locHt.ing-to(:al domiimt ing sd.

Sp<'nc<'r P. I111r<4*, Dincsh G. Smvat.C'

96 Real Number Radio Channel Assignment for the Lattices

.TC'rold R. Griggs, Xiaolma Terr sa .Tin*, University of S0111h Carolinr1

Under the right conditions it is possible for 1lie ordered Llocb of a path design Path(v, k,) to be considered as nnonlen ri blocks mid thereby crcat.e a BIBD (v, k,). We call this a tight embedding. We show that for any triple system TS(v 3) there is always shuch an embedding and that the problem is equivalent to the existence of a (-1)-IlH.D(v, 3, a), i.e., a c-llha:;kcu- nc10 design. That is, we also prove the incidence matrix of any $\mathrm{TS}(\mathrm{v}, 3)$ can be suitably signed, and, moreover the signing determines a natural partition of each block making the triple system a 11ested design

94 List-coloring triangulated polygons

.J. P. Hntchinson*, :\facalester College; R. Ramamurt.hi, Cc1lifornia Stc1le University at San l'vlarcos

A triangulated polygon (tp) is a 2-connectcd, outerpla.na.r,nea.r-triangula.tion. We prove cases when a tp can be list-colored when degree-2 (resp., degree-3) vertices an given 2 -list.s (resp., 3 -list.s) and all others -I -lists. vVe conjectme that the limiting case is the presence of at least four separating triangles (with all edges interior) due to a non-list-colorable example of A. Kostochka.

95 Tree Traversals and Permutations

Tod<l Feil, Kevin I-Int.son*, R. Matthc-,w Kret.c:hnrnr, Dcnison l:nivcrsity

In this tcdk, we discn::::; how prcorder, iuorder, and postorder traversal:; of bimiry troc-s can bc , nsed to establish multiple bijections betwcen binary trees and stack and stnck-sortable words. Vue show that these operators satis(y a sort of multiplicative ca.nc1illation. As a result of viewing t1e:-:e words as tree traversals we slow a simpl<' argument to c:onnt the number of stack wor<ls which rilc also stack-sortable. Finally, we show these operators help to define a natural equivalence relation on binary trees and stack words. Some properties of the resulting equivalence classes arc discussed.

The channel assignment problem is to assign radio frecp1ency channels to transmitters in a network, using a sma11 span of channels a.nd sa.lisfying some frequency seinuatio11s to avoid interfereuce. Griggs (1!!!)2) for11111h1ted the corresponding integer graph $L(2,1)$-labeling problem, which has been the objec:t. of n considerable number of papers. We extend it and propose the real nmnber graph labeling prol.Jlem here, which allow the labels clml the constraint::; k; to b1: 11olll1eg;itive real 1111mbers An $L\left(k_{1}, \mathrm{k}_{2}, \cdots \cdots, \mathrm{k}_{71}\right)$-labeling of iraph C is an nssignmC'nt or nonnegative real numbers to the vertices of G with x $\mathrm{E} V(G)$ labele<l $J($.r. .) such tlut. $I J(n)-f(v) I 2!$ Li; if n and v die at distance i apart, where k; $\mathrm{E}[0,00)$. We denote by , (G; k1, 12, $\cdots, k_{, 1}$) the miuinnun span over such Ia.bdiug f E $L\left(/ ;: 1 . \mathrm{k} 2, \cdots, k_{p}\right)(C)$. We show >. (CJ; $\mathrm{k}_{1}, \mathrm{k}_{2}$) is a conti1111011s mid piecewisie-linear function or $111, \mathrm{k}_{2}$, and $>$.. $\left(\mathrm{G} ; \mathrm{k}_{1}, \mathrm{k}_{2}\right)=\mathrm{k}_{2}>(\mathrm{G} ; \mathrm{k}, \mathrm{I})$ for real numbers $\mathrm{k}_{1} 2!0, \mathrm{k} 2>0$ and $\mathrm{k}=1-\mathrm{J} / \mathrm{kz}$ In a ntdio 111obie network, large service areas are often covered by a network of nearly <:ongrnC'nt polygonal c-clls, with each trnnsmittc'r at the c-enkr of a cell that. it covers. All transmitters may be pla.cecl in the triangular lattic-e $\mathbf{r} 6$, the SC]Uarc lattice fo, or the, hexagonal lattice $\mathbf{r}_{\text {,,. }}$. ve determi)I(vahws of the minimum sp,tn,$\backslash\left(f_{c}, ; k, 1\right)$ for all k 2: 4/G, have honnds for $U<k<4 / G$, nml detcn11i11c $>. .(f 0 ; k, 1)$ and $>. .(r, ., ; k, I)$ for all k $2!0$.

97 Intermediate Distance-dependent Subgraphs

Garry Johu *, Saginmv V,t!lcy State University; Tuu] llrowu, Raytheon Corp.

In an effort to model optima.I locations for emergency fa.cilities in a city, the cent.er and median for a graph were studied. The center is the subgraph whose vertices have the smallest. ecce11tricity (distance to a farthest vertex) and the 1noilitl is the :rnbgrnph with the smallest. stat.ns, or distance (snm of dist.ann s to all ol her vtrtices). The structure, properties and connections between the center and median have been known for some time. Next, their counterparts, thc periphery and marg11 of ,t graph, were i11troduce $<$. The vertices of thcse :s111,gniph;; howe the Inrgcst: eccentricity and largest distance, respedivcly. Aga.in, 11111/h is k11own about these subgraphs of graphs and trees. l'vost recently, some of the s11bgraphs consisli11g of the remai11ing, or i11tern1ediate, vertices have beell studied. For insl.clllCll!, the int.erior is the subgraph whose vcrt.kes an' not in tJw p<'ripher_v and I.he an1111111 includes the vertices in neither the center nor !!he pciriphery. In this paper uP. investigate four other subgraphs: the exterior consisting of the vertices not in the center, aucl the core, the 1m1111te alld the crust A i11tcr-;11tdi,ttc subgraphs related lo the mP.rlian and margin.

198 Some Generalized Graph Partitioning Problems Wit.h Restrictions

Cheng Zhao*, Indiana State Cniversity; Jian Liang Zhou, University of Science \& Technology of China.

This paper considers problems of the following type: given a graph $G=(\mathrm{V}, \mathrm{H})$, vertex sets U ; C V for $1=; \mathrm{i}=\mathrm{r}$, partition V into I different parts Vi, \ldots, V w with so111e restrictiom;. There are two specific restrictions u.mler consi<lera.tion in this tnlk: (1) c-ich V: contnins at most one ve-rtc-x from U ; for 1 S i S r; (2) ca(h U; belongs to just one part v ; for some $\mathrm{l}=\mathrm{i} \mathrm{i}=\mathrm{F}$. The objective function to optimize is $\mathrm{L}: 7={ }_{1} \mathrm{a} ; \mathrm{e}[\mathrm{Vi}]$ according to (1) or (2). Some heuristic algorithms are proposed.

199 Dccycling of Fibonacci Cubes

.lommn A. Ellis-l\lona.ghan, Saint Midmrl's College-; David A. Pike-, Y11ho Zo11*, J\Icmorial University of NewfoundlaHd

The decycling number ' $v(G)$ of a graph C is the snrnllest number of vertices Llwt can be delcted from G so that the resultant graph coHtains no cycle. A Fibo1w.cci string of order n is a binary striug of length n with 110 two co11sccutive ones. The Fibo1Mc:ci (.Ube of order n is the graph whose vc-rtices are the- Fibona.n:i strings of length n such that two vertices are adjacent if they differ ill just oHe position. The ramily of Fibonacci cubes has applications in interconnection topologies.

Iu this ta.lk, we will study the decydiug n11111br of Ihe Fibo11c1cci cnlie8. Lower and 11pper bounds or th0 dP-c-ycling number for thP. Fibemi.i.:ci c-11hes will be prPsenl<'d, as well as the exact v ,1lue of the clecycling number for $\mathrm{n}<8$.

Keywords: clecycling number, pa.th number, Fibonacci cubes

Query Time Algorithm for All Pairs Shortest Distances on Perrnutation G1-aphs

Alan P. Sprague, University of Alabama at Birmingham
V/e present an algorithm for All Pairs Shortest Distances on a permutation graph on n vcrt.ir.cs that., aft.er $0(11$.$) preprocessing time, can <lcliver an answer 10$ a distance query iu $0(1)$ time. The method involves a reduction to bipartite permutation graphs, a further reduction to unit interval graphs, and finally a coordina-ti-:atio11 for unit i11terval grnuhs.

Keywords: Perm11t:ition gr;iphs, al $_{\mathrm{p}}$ orithm, APSP.

161 Regular Graphs on Mobius Strip
Shan7,hen Gao, Michal Sramka*, Florida Ailantic University; Zhonghua Tan, Guangzhou Gongye University, China

A connected graph is embedded in the smface S, then the complements of its image are a family of faces (or regions). If every face of the embedding is topolgically ho111co111orphic to ,'III open <lisk of \mathbb{R}^{2}, then the c111helddi1g is called a 2 -ccll embedding. A k-reg11lar graph th;i1. 2-cell emb<ds into a imrface S, in which 1he boundary of every region has the same number of edges, say m, is called am
\#regular graph on S. A k-regular grnph is called a (k, m) reg11c1r graph of S if it is a 111. $\#$-reg11lar graph on S. We disc11sc ($1 ; \mathrm{m}$)-reg11lar graphs on the $\$ Iobi11s Strip.

162 Expectations for Graph Self-Assembly

N. Jonoska., G. L. McC'olm, A. Sta.ninska.*, llniversity of South Florida

I \backslash Iolecular self-assembly is a process of creating complex structures from simpler ones through physico-chemical properties without any hnma11 mediation. IJn<lcrst,u1di11g how na11ostructu1•c:; arc :;clf-a:;se111hled i11to more complex ones is a crucial component of nanotechnology that may lead towards understanding other processes and structures in nature. We present a model of self-assembly, inspired 1y DNA na11otech11ology and DNA coH1puti11g, aHd describe how this rno<lel call be Hsed for prediction oft.he ont.comes in 1he graph self-assembly. Using probabilistic methods, we show the expectation aud the variance of the number of self-assembled cycles, J_{J}, incl genera.lize these $1 \cdot$ csults for Kn. Open questions will be discussed as well.

[^0]
163 Mixed Radix deBruijn Sequences

A. Grcp;ory St.nrling*, Goi-don [kavcrs, l."11ivcrsity of $j \backslash$ rlmnsac,

We introduce mixed radix deI3rnijn sequences, a generaji7,atio11 of the well-kuown fixed radix deRruiln sequences also known as 'fleprinter sequences (for radix two). Let $\{1110, \mathrm{ml}, \ldots, \mathrm{mk}-1$ \}he a set of radices for 111ixed radix repnc11tatiuu of the integers modulo $\mathrm{n}=\mathrm{mi}, \mathrm{i}=0,1, \ldots, \mathrm{k}-\mathrm{l} .0$ di mi , elk-] , dk-2, ... , dl , $\mathrm{d} D$ a representation and $(\mathrm{dk}-1, \mathrm{dk}-2, \ldots, \mathrm{dl}, \mathrm{d} 0)=\mathrm{d} 0+\mathrm{di}{ }^{*} \mathrm{mj}, i=1, \ldots$ $\mathrm{k}-1, \mathrm{j}=\mathrm{U} 1, \ldots, \mathrm{i}-1$ its valuation. A pernmtat.ion of lhe set of k radices gives another represent.ation system fort.he same $s \mathrm{~d}$ of int'.eg<'rs mod11lo 11 , along wit i its attendant valuation function.

A mixed radix del3rnijn sequence on this set of mdic:es is a circular sequence oft.he mixed radix <ligits such thcit any cuntiguons s11bstri11g of k of the digits co11tai11s exac:tly one digit. for eM:h of the k radices, ;i,nd moreover. the val11at,io11s of tlwse substrings yield each of the integers modulo if exactly 011œ.
$1 / 2$ 'e nse a genenili7, ation of the deBruijn digr;lphs to pro<lnce mixed radix deBrnijn sequences.
Keywords: ! \fixed rn.dkc-s, <leOrnijn scx111ence, dc-Ornijn digrnph

164 Mutually Independent Hamiltonian Paths in The (n, k)-Star Graph

Eddie Cheng, Dan Steffy*, Oaklancl Uniwrsit.y

The (n, k)-star graph, denoted $\mathrm{S}_{\mathrm{n}}, \mathrm{k}$, is a generali7.ation of the stnr gni.iph. a pop11lar and well st.udied interr.onnection network. We say that two ha111ilto11ian 1n1ths
 lln $=\mathrm{vn}$ and $11 \mathrm{i}=\mathrm{F}: \mathrm{tt}$ for $1<\mathrm{i}<\mathrm{n}$. We say that a seL of hamiltoHinn paths is $\mathrm{m}_{11 \mathrm{ltall}}^{\mathrm{y}}$ independent if they arc pairwise independent. \Ve will give preliminary res11ts involviHg the 1nH11uer of 11111tmdly i11dependcHt hc1111ilu11iclu pciths ul-alee11 pairs of vertices in S_{n}, \cdot

Keywords: haniiltoninn, interconnection networks, nmt1w.lly indcpc11dent hmniltonian paths

165
 Some graphs for which even size is sufficient for splittability

E7.ekicl Miller, Gary E. Stevens*, FTICA

A graph is said to be splittable (2-splittahle) if its edge set can be partilioncd into two subsets so that the two induced subgraphs are isomorphic. Having an even 11umber of edge.:; is obviously ,t 11ccessc.1ry condit.iou for splitt.,Llility ,thd iu this pn.per we look at some basic dn.<;ses of graphs for which it is also s11ffide11t. Then two classes of cnterpillars are shown to have this property. Finally, similar results for k -splittability arc considered.

166 A Construction For Singular Tournament Matrices with Full Boolean Rank

J. Richard Lundgren, Dustin J. Stewart*, University of Colorado at De11ver

A to1m1c1mc11t 111atrix is the cidjacency matrix of a tourna111cnt. There exist several examples of to11rnament nrntric:es in which the real rank of the maf.fix is greater than the Boolean rank of the matrix. This has le,id some to ask if there exists a tournament matrix in which the Boolean rank is greater than the real n111k In this talk we μ resent a method for constructing tournan1cnt $1 \mathrm{~m}: 1$ triccs in which the Hoolea.n rnnk is larger than the rOal rnnk. V,lf. do $=0$ by const.rm:ling a class of tournament matrices with full Boolean rank, and then solving a particular network flows problem in order to find an infinite class of singular tournament matrices witbin this dm,s.

Keywords: To11rnament,, To11rnnnwnt matrix, Rank, Boolean rnnk, Net.work flows

167 Characterizing Iliclique-Helly Graphs

l $\$ frtrina Groshans, Universi<lad 4 e l:htenos Aires, Argentina; .Jayme L Szwarcfiter*, L'niversidade Federal do Rio de Janeiro, Brasil

A family :F of subsets of a set is intersecting when every pair its subsets has a 11011 empty iutersectio11. Say that :F is Hell y_{y} when cv)ry iutersecting suba mily of it has a non !"mpty inters0.<:1:1ion. Hf.!ly families of s11bsets have been stmlie<l iii different contexts. In the scope of grnph theory, this study has motivated the introduction of some classes of graphs, cls clique-I-Icily graphs, disk-Helly graphs anq ll(;ighhorhood-Ilclly graphs. These classes correspond to the Cat8CS where Ihe fal!li lies subject to the Belly Properly are (maximal) cliques, disks and neighborhoods, respectively. On the other hand, define a bicliqtLe of a graph as a maximal subset of its vertices i11ducing a co111plete bipartite graph. Bicliq11es in graph theory h,we been also consi<lered in <lifferent contexts and form a st.rnctmc with int.cresting
propertie::;. Ju this work, we consider thc gn1.phs whose fa111ily of bidiques i;; a Helly fn.inily, the birliqur-:-Hr.lly qrnphs. We <lesnibe st.rndnrnl c:harn<:1.eri:mtions of it. The characterizations lead to polynomial time algorithms for recognizi11g biclique-Helly graphs. 'Ne recc1ll that a graph might have an expo11c11t ial uuu1lwr of hidiq11cs. Therefore the algorit.Inu by Berge for rccog1ii:li11g !Icily families of ;111> sets could not be applied directly to recogni.r.c bicliq11c-Hclly grnphs in polynomial time.

Keywords: Hicliques, Hiclique-Helly graphs, Cliques, Cliq11e-Hclly graphs, I-Telly T'ropert.y

168 Authentication Codes based on Affine Transformations

N. Gutierrez, I-I. 'lhpia-Ilecillas*, L'niversidnd J\utonorna :t\Ictropolita11a i \backslash lexico

In HJ92 G..J. Simmons introduced the concept of (11nco11ditional) authent.ical.ion code (A-code) for a receiver to authe11tic,1te i11fon11atio11 sent by a sender Ly 111calls of n public chr1nnCl. In recent yC'ars a number of anl hors have lweu ini<'rested in combining aspects of several areas including linear trausfornintious aud errorcorrecting codes to produce A-codes. In this talk some A-codes arc described by 1llca11s of aflinc tra11sfonm1tious over 1 tinite field witli $\mathrm{I}=\mathrm{JJ}$. . OI cl prime and $r \mathrm{~d}$ posili.ivP. inlf.ger) with probabilit.ies of s11ccessful impersonation attinc-k and sm-c:essful substitution att.ack equal to $1 / q$.

169 A Sierpinski graph and some of its properties

Alberto J \backslash lokak Teguia*, Auaut. P.Godl>ole, East, Te1111cssec Slc1te Uuivcrsit.y
The S-ic17J•i1iskifrnclal or Sicrp.i1iskii gasket Eis a fan1ili,1r ohjcd studied l,y specialists in dynamical systems and probability. In this pa.per, we consider d grnph 8,, derived from the first n iterations of the process that lecids lo 1 :. and sludy some of its properties, i11dudi11g the cycle structure, do111i11utio11 1111111br and pebbling number. Various OJWII qnest.ions arc posC'd.

170 Double domination edge critical graphs

Derrick Thacker*, Teresa ${ }^{1}{ }^{1}$. Haynes, East Tennessee State Universit.y
In a graph $\mathrm{G}=(\mathrm{V}, \mathrm{E})$, a subset $\mathrm{S} \quad \mathrm{V}$ is a double <lontinnting set if every vertex in V is dominated ,it le,t:-:I. twice. The minimum rnrdiuality of a double clornimiting set of G is the <lonble clomination nnmber $Y^{2} 2(G)$. A grnph G is donhlc <lomination edge critical if for any edge $\mathbb{H V}$ E 1:'(C), the 'Yx2(G + uv) < $\mathbf{Y} \times 2(\mathrm{G})$. We investigc1te properties of double domina.tion edge criticc1.l graphs. Th particular, we characterize the d011ble domination edge critirnl grnphs G wil.h $/ x: z(\mathbf{G})$ E P. $\cdots!\}$.

171 Partitions of difference sets and code synchronization

Vladimir D. Tonc:hev, :.'lic:higan Tcchnolo;?;;ical Universit.y

174 Ruin problems in Stochastic Risk Computing

Difference systems of sr.ts (DSS) are combinatorial arn:rngements that arise in con neciio11 witli code 8Jnchrunization arnl avoicli11g conflicts iu ,1sy11chru11om; 111ultiple a<:cess channels. Some combinatorial and algebrnic constrnctions of DSS oblriincd as partitions of cyclic difference sets are discussed.

172 Transitive Closure of a Lattice Fuzzy Matrix

Zengxiang Tong, Otterbein College

This is the contimm1.ion of my two papc\rS ent.itkd Connededn0.ss of an fll7, y Grn.ph and An Algorithm for Fi11ding the Colll1ecLedncss l\latrix of a Fuzzy Graph, which were pnblished in the journal Congressus Numerrantium (1995 and 1996). In this paper, the author i11truduces the concepts of an L-fuzzy graph .lid its c:onnect:edness, mel nses Lat.I.ice Fit7.7.y matrix to denote ml L-ftt7,7,y graph, and the transitive closure of the matrix to denote the connectedness of the graph. The properties of the connectedness of all L-fuzzy graph arc studied, and two algorithms for finding the connecte<lness matrix of an L-flt7,Z_v grnph, i.e., 1he transitive closure of a LaLtice Fuzzy matrix, arc presented. Keywords: fuzzy graph, lattice, connectedness, matrix.

173 Expected value and dice games

Lorenzo Traldi, L!\fayett.e College

A generalized die is simply a finite list. $X=\left(1_{1}, \ldots, \ddot{m}_{1 l \mid}\right)$ of integers, mid the expected value of the die is the meant $L X$, If $X=\left(x_{1}, \ldots, \mathrm{X}_{\mathrm{m}}\right)$ and $Y=(\mathrm{y} 1, \ldots, \mathrm{y}$, , $)$ are two dice then we say X is stronger, or X wins the contest, if there ..ire more μ,1irs (i, j) with 1; > ?jj than there ire pairs (i,j) witli :r; < ?lj- Colllmon sense s11ggesls th;it the rdat.ivc streng1.h of X !nd Y should be relat.ed to their expecled values. If $\mathrm{X} 1, \ldots, \mathrm{X}_{\mathrm{m}}, \mathrm{YI}, \ldots, \mathrm{Y}_{\mathrm{n}}$ are restricted to two values then this suggestion is valid, but otherwise it is not. Two striking results .ire:

1. If the integcrn which aupe,1. 011 the dice in q11e:;tion arc rc:;tricted to three values then 1here is a nmnerical meflstire which <let.ermines 1he relative. strengths oft.he dice. However the expected value is 110 t such a measure.

2 Among the 462 six-sided dice involving integers 1 S Xi S G there are only :ccuel1 whose contests with the re:st :lre detenni11ed hy expected values. Four of the seven arc obvious: the iwo weakest. dice are ($1,1, I, I, 1, I$) and ($1, I, I, 1,1,2$) and the two strongest dice are $(5,6,6,6,6,6$ and $(6,6,6,6,6,6)$. Another one of the seven is the familiar $(1,2,3,4,5,6)$. Try to find the other two before yon come io the talk.

Iloa Tran, New York 1:nivcrsity \& Fordh:un UnivC'rsit_v
As fhe tool to predict the collapse in terms of finance of n company, tile probability of ruin plays a crucial role. The interest nit0, initial compo1.1ndi11g a.sset.s, togdlicr with ruin time, ruin function will he cfo;cus:;cd for the 1lew directions of observing the clmnce of being collnpsed of the company. As the interest rnte becomes larger, the observation is the probability of ruin will be smaller. Random walk, Brownian motion alld the co111wtio11 with Capital Asset .Prici11g $\ \backslash$ fodd also will be ad<lrrsserl. The moclcls nm assist decision makers or investors to make <lCcisim1 io choose between insurance and investment risk.

175 A new formula for computing Frohenius numbers in three variables

Jernct Trimm, Ovcrtou11 :1. G. Jendn, Auburn University

Given a set of rel.i.itively prime prn;itive integers, after sollle point ,di posil:ive inl.cgers are represe11t;1hle as a linear cornbin;ition of th, \set with 11omH!??ntiv, integer coefficients. Which integer is the last one not so representable is the 1"robeni11s problem, or the Frobcuius stcimp problem, and the number in question the Frobe11ins 11ul11her of the set. While the two-variable solntio11 is widely k11ow11, alld the gcnC'ral solution is NP-hard, then lmve been scveral n.lgorithlli<: sol11t ions of the three-variable problem. In this paper we present a fornmlnic solntion for the Frobcnius number of most rel.:1tively prime triples.

Keywords: Frobc11iw; 111u11ba; conductor, n11111eic sc111igro11ps, dio μ lmntiue equations

176 Periodicity of subtraction games with subtraction sets $\{1, b, c\}$
Jean I\I. Turgeon*, University of Montreal; Daniel A11det, :\1atthie11 D11fimr, U.Q.A.J $\backslash 1$
\Ve consider games defined by subtraction sets of the form $\{1, b, c\}$, i.e. a game where two players have a stack of chips ill can111011 alld tc1ken t1rill either 1 or b or c chips, where $\mathrm{l}<\mathrm{h} \ll$: The winnm is the one who takes the la.t chip. Given a particular set $\{1, b, c:\}$, computing the losing positions ns a function of the number $\mathbb{\|}$ of chips (a position from which you call only put your opponent in a winning positio11; fro111a winning position, there is a possibility of μ lcicing your opponent ill a losing position) presents no problem. This function always becomes eventually periodical. The interesting problem is to find a general relation between the set $\{1$, $\mathrm{b}, \mathrm{c}\}$, d111 the dm.rc1.ctcr of that periodicity. We shall presellt a cornplete solutiou, including the Grundy v11ues of et<h position. The more general cllee $\{a, b, c\}$ is still open.

177 A Hybrid Model for Classification Rule Discovery

Michael L. Gcirgano, Gokhora Uran, Pcice University

A genetic algorithm, swarm intelligence, and hill climbing hybrid heuristic; is applied to the data mining task of developing classification rules and comparisons are made with other methods.

178 Bounds for Representation Numbers of Hypercubes .lames Urick, Rochester 111stit11te of Technology

A graph G has a representation modulo n if there exists an injective malp f : $V(G)-+\{0,1, \ldots, \mathrm{n}\}$ such thlit vertices $1 t$ and v are adj, 1 cent if and only if $I(11$.$) - . \mathrm{f}(\mathrm{v}) \mathrm{I}$ is relatively prime to $l l$. The representation $1 \mathrm{mmber} \mathrm{n}: \mathrm{p}(\mathrm{G})$ is the smallest n such that C has a representation modulo n. We ge11erate new bounds for representation numbers of hypercubes.

Keywords: vertex lc1bcling, refrese11tatio11 111odulo 11, product dirnension, lyperc11bes

179 The Forcing Connected Domination Number of a Graph

Robert Vandell, Indiana Univer:-:-i1.y - $\mathrm{Pl}_{\mathrm{in}}$ lie Univcrsit.y
In .JCl $\backslash \mathrm{JCC} 25$ (1D97), Harary ct al defined the forcing dornina(ion $11 \mathrm{mnber} \mathrm{f}(\mathrm{G},-y)$ of a graph (; Th this paper we extend this definition to connected domi11c1tio11, and cv;1luate the parameter for ccrtclin grnphs, 11lot 11ot. 1hly grids. For a com1ectcd grclph G the connected domim:Lion number $A_{\not}(G)$ is the minimum cardinality of a connected dominating set of the graph. For a connected dorninati.ug set S of cardi11ality, ${ }_{c}(G)$, a subset T is called a forcing set if S is the unique 111iliil1111111 conncc:ted dominating set containing T. The forcing nnmber $f\left(S,-y_{n}\right)$ of S is the minimum cardinality of a forcing subset of S. The forcing co11nccted domination mnnber $f\left(G, A t_{c}\right)$ of a graph G is the minimum forcing number , unong the miiii111um all11ected domi11ati11g sets of G.

180 The pebbling number of graph

Jessia :\Iuntz, Sivaram Narayan, Noah Streib, Kelly VanOcht.en*, Central
l \backslash Iid1igan Uuiversit.y

To make a (p, k) pebbling move, p pebbles are removed from a vertex. Then, p - L pebbles arc tossed out and the remaining k pebbles arc ph1ced 011 an adjarnnt vertex. The \mathbb{O}, k) pcbbliny numbcr, N, is the smallest 1111111br of pebbles needed slich tlmt for every distribution of N pebbles it is possible to move I pebbles lo any desired vertex by a sequence of (p, \boldsymbol{l}) pebbling moves. The (JJ, $\boldsymbol{k})$ pebbling number of a gra.ph G is denoted $J_{l p} \mathrm{k}(\mathrm{G})$. The most commonly used pebbling niove is the $(2,1)$ pebbling rnove, and the (2.1) pebbling nnmher of a graph C is ,kno1.cd $J(U)$.
The optimal pebbling rmmber of G, denoted $f_{o_{p t}}(C)$, is the smallcsl n11mbar of pebbles needell such thc1t every vertex ill G is μ eLblca.ble by a seq11c11æe of $(2,1)$ pebbling moves for a p11tic1 1lar distrih1 1 lion of thal n111nbor of pehhlcs.

We present resnlts $011(p, k)$ and optim11I p bbling m1ml)(rs of graphs of dimnctcr three, including results of a sharp upper bound for (2,1) pebbling numbers of grnphs of dic1111ter three.

181 Noncooperative Bottleneck Flow Control in Two User Networks

Ping-Tsai Chnng, Long Islarni Universit,_v: n.ichard V;in Slyke*, Polyt.echnic University

\Ve :;tudy all adaptive, di:;tributed algorith111, the bot.tleueck flow coutrnl algorithm wlwre each 11sa a<ji1sts its rate b,ised on a sat.urntion measnrn for the t:hrnnghpnt. versus delay tradeoff at the bottleneck link. Bach user iteratively updates its flow to meet. its individual sat11ration measure. Our work focuses on individual (or 11;cr) opti111izatio11 as opposed to sy:tc111 opti111izatio11. Convcrgc11cc a11alyscs arc based 011 a noncooperative game theoretical formulation. Under this formulation, the convergence to a : \'ash equilibrium point of the bottleneck flow control for an arbitrary two user 11eiwork is :;hown.

182 Planarity and colorability: a survey

V. Voloshin, Troy University
l'vixecl hyper.graph is a triple $H=(X, C, D)$ with vertex set X ancl two families of subsets, C and D, called C-edges and D-edges respectively. Proper k-coloring of H is a mapping from X into a set of k colors in such a way thi.t every C-edge has two vertices of a Common color and every D-cdge lws two vertkcs of Different colors. Mixed hypergraph is called colorable if ii admits at least one proper coloring and uncolorable otherwise. In a colornble mixed hypergraph, the maximum and minimum number of colors over all proper colorings which use all k color: is r.alled the upper ::ind lower chromatic nnmbers respect.ivdy. Mixed hypergrnph has a continuous chromatic spectrum if proper colorings exist using all numbers of colors between the lower and upper chromatic numbers. ! $\$-fixed hypergraph is calied planar if it can he emhccldccl in the plane in :;uch a way that. edge:; intersec:I. only at the respe<:l, ive neighborhoods of common vertice:-. Planm- mixed hypergrnphs generalize pl<tnar graphs and hypergraphs. We survey results <lnd for111ulate :;orne open problc111s 011 colorability, lower and upper dh ro 11htic urnnbers, and the chrmnati<: spectrum of planar mixed hyp<rgraphs.

183 Triad Designs

W. D. Wallis, Southern Illinois 1.Jniversiiy Carbondale
\Ve sa11 discuss a family of tournaments in which each match has size 3 and the order of players is important.

184 Connected Domination in Grids

Peter Ilambnrger, Chip Vandell, \Jatt. \Va)::̈h*, Indiana Univnsity - P11rd11e University

The connected domination 1111111ber of a graph was def ned by Sa.mpa.thkumc1.r and Walikar in 1D7! : $\mathrm{I}_{\mathrm{r}}(\mathrm{G})$ is defined as the millin111111 c,i.nliuality of a do111im1ti11g :;ct. which induces a connected graph in G. We consider this $\mathrm{p}<$ 'l.rameier and some of its close relatives in the context of transportcition networks, concent.rating particularly 011 (finite an<l i11finite) grid gra.ph:;.

185 Binary trees with the largest number o'rsubtrees with at least one leaf

L.A. Szekely, Hua. Wang*, University of South Carolim1.

We charn<:1,crize binary trees with n leave:-, which h,ive 1he greatc.....f, 1111111ber of subtrees with at least one leaf. These binary trees coincide with thosc which were :;hown by Fischen11a1111 et al., Jele11 and Triesch to mi11i111i;e the Wie11er i11dex Knndsen provided a m11ttiple parsimony ali,gnment. with affine ,gap cost nsin;; a phylogenetic tree. In bounding the time complexity of his algorithm, a factor was the number of so-called "acceptable residue configurations". In our terms, it is the nm11bcr of suht.rce:; contc1,11ing at least 011c leaf vertex. K111ddse11 cst.inmtccl the maximum number of acceptrtble residue config11rations over all binary trcot'S. VVe determine this maximum exactly.

186 On the Edge-Graceful Spectra of the Double Cycles and Their Coronae

Sin-Min Lee, Ho Kuen Ng, San Jose State University; Tao-Ming \Vang*, Tung-Ha.i University, Tai $\cdot .11$

Let G br. a (p, q)-grnph and $\ddagger>0$. A graph G is :-ai<l to hr. /,:-c,dge-gnwcful if 1he edges can be labeled by $\mathrm{k}, \mathrm{k}+1, \ldots, \mathrm{k}+q-1$ so that the induced vertex smns ($\bmod \mathrm{p}$) are distinct. We call the set of all such k the edge-graceful spectrum of G , am! denote it hy t'._ql(G). Iu this paper the cdgc-grnccful sptodm111 of the do11i>c cycles and their coro1111e are del-ennined.

187 On P(a)Q(h)-Super Vertex-graceful I-regular and 2-regular Graphcs

Sin-Min Lee, Ho Kuen Ng, San Jose State University; Yung-Chin \Vang*, Tzu-Hui Institute of Technology, Taiwan
(;iven i11tegen; al> >1, a gri:luh G with Yertex set $V(G)$ i:llld edge set $E(G)$, $\mathrm{p}=\mathrm{IV}(\mathrm{G}) \mathrm{I}$ ll.nd $<\mathrm{J}=\mathrm{IE}((;) \mathrm{I}$, is said to be $\mathrm{P}(\mathrm{a}) \mathrm{Q}(\mathrm{b})$-s11pcr vcrt.ex-graccfnl (in short $P(a) Q(b)-S V G)$ if there exists a function pair (f,f+) which assigns integer labels to the vertices and edges, i.e., $f: V(G)-+P(a)$ and $f+: E(G)+Q(b)$ are onto, $\mathrm{f}^{+}(\mathrm{u}, \mathrm{v})=\mathrm{f}(\mathrm{n})+\mathrm{f}(\mathrm{v})$ for cttiy (u, v) hdongs to $\mathrm{E}(\mathrm{G})$, Mid $Q(b)=\{b,(b+l), \ldots,(b+q / 2),-h,-(b+l), \ldots,-(h+q / 2)\}$, if q is even, $\mathrm{Q}(\mathrm{l} . .>)=\{0, \mathrm{~b}, \ldots,(\mathrm{~b}+(\mathrm{q}-1) / 2),-\mathrm{b},-(\mathrm{b}+(\mathrm{q}-1) / 2)\}$, if q is odd, $P(a)=\{a,(i: t+1), \ldots,(a+p / 2),-a,-(a+J), \ldots,-(a+p / 2)\}$, if p is even, $P(n)=\{0, a,(a+1),(a+(p-1) / 2),-a .-(11--!-1),-(a+(r-1) / 2)\}$, if p is odd.
We determine here classes of 2-regular graphs that are $P(a) Q(b)$-super vertexgraceful for different a, b.

188 Using randomized sampling against NTRU

Heike Vogel, Alfred Wassermann•, I:niversity of Bayreuth, Germany
The public key encryption method NTRU is very promising because of its simplicity and its speed. Coppersmith and Shamir transferred the problem of finding the μ rivate key in NTH.U int.o il "short v<ctor prol.>lem" in a lattice. Due to sorne attacks the pll.rmnet.ers of NTRU were c:lmngerl in 200:l. This lrns conse<J11ences on lattice attacks on NTRU. Here, we transfer the problem of finding the private key of the new NTRU scheme into a "closest vector problem" in a lattice. Further, a 11ew proln1hilistic algorithm by Schuorr called random sam μ liug was implement.c<l and nserl ngninst. the new VC-Yrion of NTH.U. It w/s possible 10 break instances of length up to 97 on a standard personal computer.

Keywords: NTRU, public: key cryptography, randomized sampling, lattice basis reduct.ion.

189 A Proof of Petersen's Theorem

John .J. Watki11s, Colontdo College

In 1891 Julius Petersen published a paper that c:ontaincd his now famous theorem: any hri<lgclcss cubic grauh has a]-factor. These days Pctcrscu's theorem is always proven inrlirect.ly 11sing either llnll's 1heorem from 19:l!i or T11tle's 1.heorem on !factors from 1947. We , viii disrnss a number of attempts that have been made over the years, including Petersen's own attempt, at a direct proof of this result.

190 On the super vertex-gracefulness of cartesian product of graphs

Sin-Min Lee, San Jose State Universi1y; \Vnmli Wei*, florirla Atlantic Univerf;il.y

For any positive integers p and q , we denote $\mathrm{P}=\{1,2, \ldots, \mathrm{p} / 2\} \mathrm{u}\{-1,-2, \ldots-\mathrm{p} / 2\}$, if pis even, and $P=\{0\} u\{1, \ldots,(p-1) / 2\} U\{-1,-2, \ldots-(p-1) / 2\}$, if pis ode!. $\mathrm{Q}=\{\mathrm{I}$, $\ldots, \mathrm{q} / 2\} \mathrm{u}\{-1,-2, \ldots-\mathrm{q} / 2\}$, if q is even, and $\mathrm{q}=\{0\} \mathrm{u}\{1, \ldots,(\mathrm{q}-1) / 2\} \mathrm{u}\{-: \mathrm{I},-2, \ldots-$ $(\mathbf{q}-\mathbf{1}) / \mathbf{2}\}$ if G is odd. $\mathbf{A}(\mathrm{p}, \mathrm{q})$-grnph \mathbf{G} is called snper vert-ex-grnc:cfnl if Ihere exisl.s a function pair ($\mathrm{f}, \mathrm{f}+$) which assigns integer labels to the vertices and edg<)S; that is, f. $V(G)---+P$, and $f+:$. E (G) ---+Q. sllh that f is onto P illnd f^{*} is onto Q, and $\mathrm{f}+(\mathrm{n}, \mathrm{v})=\mathrm{f}(\mathrm{n})+\mathrm{f}(\mathrm{v})$ where ($11, \mathrm{v}$) E E (G). In [1!lj the first: :111thor init.iat.e 1hr investigation of the super vertex-graceful grnphs. We consider here graphs which are <:artesian product of graphs that are super Yertex-grnccful. In particulur, we show that all torus grn.pl1s ,ire not :;nper vert.ex-gn,u:dul.

191 Variations on Discrete Renyi Parking Problems

$1 \backslash$-lichad L. Gargano, Joseph F. Malerha, Arthm Wcise11sed*, Pace University

Consirler a pat.h with x crlges. At timc $\mathrm{l}=\mathrm{l}$ a cnr randomly pl'trks on an edge reducing the available parking spaces. At each lime period m1other car arrives and parks l'i:tlldornly in a feasible parking space (i.e., so that its not l>lodki11g any other pnrkerl c:nr). The process enrls when thcre are no more fca.c;ihlc spaces. \Vhat percent of the spaces do you expect to be utilized?

192 Percolation Threshold Bounds for Archimedean and Laves Lattices via the Containment Principle

John C. Wierman*, Johns Hopkins University; Robert Pcirvictnc11, IJniversit:y of l fflhomne

Percolation models are infinite random graph models for phase Lra11sil ions and critical phenomena. The percolation threshold corrnsponds to the c:ritical temperature or phase transition point. The containment. priut:iplc sta1.ts that if 011 c graph is isomorphic- to n snbgrnph of / \backslash nother, its perr:olation thrP.;;holr is grcaf.('r than or equal to that of the other graph. We c.011sider two classes of planar infinite lattice graphs which arc studied in the physical science literature. We find all subgraph relationships among ,i cl,1ss of 21 lattice grnphs, proving i111pos:sihili1.y of a s11hgrnuh relationship iu all other cases. Using bounds determined by other methods, we use the containment principle to improve percolation threshold bounds for some of the lattice graphs.

Keywords: perr.olation, random hrrnph, s11hgrnph

193 Lattice Paths and Subgroups of Riordan Matrices
Wcn-jin Woan*, Davirl Ilo11gh, Ilowarrl Univcri-it.y

Ve com;icler those la.Wee pciths that. use steps selected from: $\mathrm{U}=(1,1)$, $L=(1,0), \mathrm{D}_{1}=(1,-1), \mathrm{D}_{2}=(1,-2), D a=(!,-), \ldots$ with assigncrl wcights l, wo, w1, w2, w:i,.. .. We define a weight polynomial $w(x)=1+w 0 x+u ; 1 x^{2}+$ $\mathrm{w}_{2} \mathrm{x}^{3}+\mathrm{w}_{3} x^{4}+\ldots$ The lattice paths generate a lower triangular Riordan matri:r; $1 /$, A lower triangular matrix is i;aid to he a Riordall matrix, if the gc11crati11g f11nction of the k-th mlumn of M is $g f^{k}$, wher<' $g=g(x)=1+a 1 x+a 2 x^{2}+\ldots$ and $J=f(x)=x+b_{2} x^{2}+b_{1} 1^{1}:^{*}+\ldots$ where $J=x(w(J))$. The set Rafail Riordan ma.trices is called the Riordan group. Here we study a list of subgroups alld its relation with lattir:e paths.

Keywords: Lattice Paths, H.iord,1n !\:latrices and Stieltjes Matric:cs.

194 On P(a)Q(1)-Super Vertex-graceful Unicyclic Graphs Si11-
fin Lee, Regina
,Vong*, San .Jose State University

For ally integer a;;?ll, a graph G with vertex set $V(G)$ and edge set $E(G), p=I V(G) I$ and $q=I E(G) I$, i;; said to be $P(a) Q(1)$-super vert, $(x$-graceful (ill short $P(a) Q(1)$ SVG) if there cxii-t.s a fnnction pair ($\mathrm{f}, \mathrm{f}+$) which ac,cigns integer labels to the vertices and edges, i.e., $f: V(G)->P(a)$ and $r^{+}: E(G) \neq Q(1)$ are onto, $f+(u, v)$ $=f(u)+f(v)$ for any (u, v) E E(G), and
$q(1)=\{ \pm 1, \ldots, \pm q / 2\}$, if q is even,
$\{0, \pm 1, \cdots, \pm(\mathrm{CJ}-\mathrm{l}) / 2\}$, if Q is orlrl,
$P(a)=\{ \pm a, \pm(a+1) \cdots, \pm(a-1+p /: 1)\}$, if p is even,

$$
\{0, \pm a, \pm(a+1) \ldots, \pm(a-1+(p-1) / 2)\}, \text { ifp is odd. }
$$

We determine here classes of unicyclic graphs that are $P(a) Q(1)$ super vertcxgrac:cful for $\mathrm{a}=2$. Moreover, some conjectures arc proposed.

195 Embedding Graphs on the Torus

Jenni 'Woodc:oc:k*, Wendy Myrvokl, University of Victoria, Canada

A lortLs is a surface shaped like a doughnut. A lopolo_qical obslmclio11 for the toms is a graph G with minimum degree three that is not embeddable on the torus but for all edges c, r, - c c111bed; 011 the torus. A 111il101 orde1- obslntclio11 ha.; the aclrlitional property that. for all erlg;cs r, G contrn<:t c ember::, on the torns. The aim
of our research i; tu find <111the obstructions to the 1.orus. A sec.n:h for à co111plde set of toms obstrnctions is fm:ilitaterl by dct.ennining the smnll obstr11ctio11s 11sil1 the computer. Polynomial time algorithms have been proposed for this problem, but they arc complex and potentially have a high consta11t overhead th, $\backslash \mathrm{t}$ could make thc1JJ less desirable for s111J1 graphs. In thi:; talk, we desci•ilic wn "ltcrn<1te approach based on Demouc:ron's planarity testing algorithm which works in exponential worst case time yet is very effective for small graphs (the potcnl.ial lorns obstructiuus).
Keywords: t.opologir.al graph thcory, ernh<orrling graphs 011 n1c 1:nms, algorit.Juns for graph embedding.

196 On Super Edge-graceful Eulerian Graphs

Sin-Min Lcc, Ling Wnng, Emnm1111el R. Yem.*, San .Jose Stat<' U11ivcrsity

Let C be a (p, q) graph in which the edges arc lnbelcd $1,2,3, \ldots \mathrm{q}$ so that the vertex sums are distinct, mod p, then G is called edge-graceful. J. l\itchem and A. Simoson i11trod11eed the concept of super c<lge-gn1.cd11l graphs which is a stro11gcr concept. than e<lge-graccfnl for some da.c;scs of grnphs. We show here some c11kia11 graphs are super edge-graceful, but not edge-graceful; and some arc cdgc-grnceful but not super edge-graceful. We :;how that Rosa's type co11-litio11 for c11lenia11 ;11 $\mu \mathrm{cr}$ cdge-grnceful gmph:; rloes not cxi:-1:1: Moreover, some c-onjed.nres arc proposer!.

197 Detectable Colorings of Graphs

(;ary Chartra11d, Remy Esc11<1বro, F11tab;i Oka1noto, Pi11g Zl1ang*, \Vcsfern l\Iichigan Uuivcrnit.y

Let G be a connected graph and let $c: \mathrm{J}: ;(\mathrm{G})-+\{1,2, \ldots, \mathrm{k}\}$ be a coloring of the edges of r, (where adjacent edges may be colored the si me). For each vertex $1 \cdot$ of C, the color cor!c ofv is the k-t.nplc $\mathrm{q}(11)=\left(\mathrm{a}_{1}, \mathrm{n}, \bullet, \bullet, \mathrm{ak}\right)$, wherc n ; is I.ti(nmnhcr
 detectable if distinct vertices have distinct color coclcs. \Ve present. some results in this area.

198 Some Generalized Graph Partitioning Problems Wit.h Restrictions

Cheng Zhao*, Indiana State Cniversity; Jian Liang Zhou, University of Science \& Technology of China.

This paper considers problems of the following type: given a graph $G=(\mathrm{V}, \mathrm{H})$, vertex sets U ; C V for $1=; \mathrm{i}=\mathrm{r}$, partition V into I different parts Vi, \ldots, V w with so111e restrictiom;. There are two specific restrictions u.mler consi<lera.tion in this tnlk: (1) c-ich V: contnins at most one ve-rtc-x from U ; for 1 S i S r; (2) ca(h U; belongs to just one part v ; for some $\mathrm{l}=\mathrm{i} \mathrm{i}=\mathrm{F}$. The objective function to optimize is $\mathrm{L}: 7={ }_{1} \mathrm{a} ; \mathrm{e}[\mathrm{Vi}]$ according to (1) or (2). Some heuristic algorithms are proposed.

199 Dccycling of Fibonacci Cubes

.lommn A. Ellis-l\lona.ghan, Saint Midmrl's College-; David A. Pike-, Y11ho Zo11*, J\Icmorial University of NewfoundlaHd

The decycling number ' $v(G)$ of a graph C is the snrnllest number of vertices Llwt can be delcted from G so that the resultant graph coHtains no cycle. A Fibo1w.cci string of order n is a binary striug of length n with 110 two co11sccutive ones. The Fibo1Mc:ci (.Ube of order n is the graph whose vc-rtices are the- Fibona.n:i strings of length n such that two vertices are adjacent if they differ ill just oHe position. The ramily of Fibonacci cubes has applications in interconnection topologies.

Iu this ta.lk, we will study the decydiug n11111br of Ihe Fibo11c1cci cnlie8. Lower and 11pper bounds or th0 dP-c-ycling number for thP. Fibemi.i.:ci c-11hes will be prPsenl<'d, as well as the exact v ,1lue of the clecycling number for $\mathrm{n}<8$.

Keywords: clecycling number, pa.th number, Fibonacci cubes

[^0]: Keywords: Self-Assembly, Exped',1tion of $\mathrm{I}<,$, , Vari11ncP. of K, ,

