Minimal Dominating Separating Sets in \{1\}-Cycle Extendable Tournaments
David E. Brown, Utah State University, Kim Factor, Marquette University
and Larry Langley* and Sarah Merz, University of the Pacific

In a regular tournament on $2k + 1$ vertices the minimum size of a set that is both dominating and separating is at least k. We consider when this set is of exactly size k in tournaments that are \{1\}-cycle extendable. A set of vertices, S, is dominating provided for all v in the digraph, either $v \in S$ or $(w, v) \in A(D)$ for some $w \in S$. In a strongly connected digraph, a set of vertices is separating provided removing this set of vertices results in a digraph that is not strongly connected. A tournament is \{1\}-cycle extendable if every directed cycle that is not Hamiltonian can be extended by one vertex.