Embedding Factorizations for 4-uniform Hypergraphs

Amin Bahmanian, Sadegheh Haghshenas*, Illinois State University

Let \(\binom{X}{h} \) be the collection of all \(h \)-subsets of an \(n \)-set \(X \supseteq Y \). A coloring (partition) of \(S \) is \(r \)-regular if the number of times each element of \(X \) appears in each color class (all sets of the same color) is the same number \(r \). Given an \(r \)-regular coloring of \(S \subseteq \binom{X}{h} \), we are interested in finding conditions under which this coloring is extendible to an \(s \)-regular coloring of \(\binom{X}{h} \). The case \(h = 2, r = 1 \) is extensively studied in the literature and is closely related to completing partial symmetric Latin squares, but very little is known for \(h \geq 3 \).

The case \(S = \emptyset, s = 1 \) was studied by Sylvester in the 18th century, and remained open until the 1970s.

In this paper we completely solve the case \(S = \binom{Y}{h}, h = 4 \). This settles the first open case of recent problem of Bahmanian and Newman. These results can be seen as extensions of the famous Baranyai’s theorem, and make progress toward settling a 40-year-old problem posed by Cameron.

Keywords: embedding, factorization, edge-coloring, decomposition, Baranyai’s theorem, amalgamation, detachment