Rényi α-Entropy of Tournaments

David Brown*, Eric Culver, Bryce Frederickson, Sidney Tate, Brent Thomas, Utah State University

The Rényi α-entropy of a discrete probability distribution \(P = \{p_1, \ldots, p_n\} \), defined as

\[
H_\alpha(P) = \frac{1}{1 - \alpha} \log_2 \left(\sum_{p \in P} p^\alpha \right),
\]

is a generalization of the classical Shannon information entropy \(H(P) = -\sum_{p_i \in P} p_i \log_2(p_i) \).

Suppose \(G \) is an \(n \)-vertex undirected graph, and \(L(G) \) is the Laplacian of \(G \), but normalized so that the trace of \(L(G) \) is equal to 1. The multiset of eigenvalues \(\Lambda = \{\lambda_1, \ldots, \lambda_n\} \) of \(L(G) \), each being nonnegative, real, and all summing to 1, may be regarded as a discrete probability distribution and, via \(H(\Lambda) \), we obtain (what some call the von-Neumann) entropy of \(G \). The functional \(H \) on the set of undirected graphs has been investigated recently by many, but if \(D \) is a directed graph and \(L(D) \) is \(D \)'s normalized Laplacian, the eigenvalues of \(L(D) \) are not necessarily real and so the notion of Shannon (von-Neumann) entropy cannot be applied. We get around this by applying the Rényi α-entropy to investigate the entropy of directed graphs, and focus our investigation on tournaments (orientations of complete graphs). We determine which tournaments optimize the Rényi α-entropy for various \(\alpha \), and essentially investigate what the functional \(H_\alpha \) says about the tournament to which it is applied. We observe that, as we increase \(\alpha \), \(H_\alpha \) partitions the set of tournaments into a more and more refined set of equivalence classes. For example, if \(Q \) is a quadratic residue tournament (a regular tournament that is vertex- and arc-transitive) and \(R \) is a regular tournament that is not a quadratic residue tournament, \(H_4(Q) > H_4(R) \). More generally \(H_\alpha \) yields a weak ordering of the set of tournaments on \(n \) vertices, for some \(n \) and \(\alpha \); and a linear order for other \(n \) and \(\alpha \).

Keywords: Graph entropy, digraph entropy, tournament, ranking of tournaments