Additive Coloring of Cycles

Axel Brandt*, Savannah Williams, Davidson College

An additive coloring of a graph G is a labeling of the vertices of G from $\{1, 2, \ldots, k\}$ so that any two adjacent vertices have distinct sums of labels on their neighbors. The additive coloring number of G, denoted $\chi_{\Sigma}(G)$, is the minimum positive integer k such that G has an additive coloring. In 2009 Czerwiński, Grytczuk, and Żelazny conjectured that $\chi_{\Sigma}(G) \leq \chi(G)$, where $\chi(G)$ is the chromatic number of G. The additive choice number of a graph G, denoted $\text{ch}_{\Sigma}(G)$, is the minimum positive integer k such that whenever each vertex of G is given a list of at least k integers, then an additive coloring can be chosen from the lists. In 2016 Ahadi and Dehghan showed that χ_{Σ} and ch_{Σ} can be arbitrarily far apart. In this talk, we show that $\chi_{\Sigma}(C_n) = \text{ch}_{\Sigma}(C_n) = \chi(C_n)$ for all cycles C_n. The proof for even cycles relies on counting placements of non-attacking rooks on a specific chessboard in application of the Combinatorial Nullstellensatz, and the proof for odd cycles relies on directed walks in an auxiliary graph.

Keywords: lucky labeling, additive coloring, Combinatorial Nullstellensatz, rook polynomial