On the 2-Y-homogeneous condition of the incidence graphs of 2-designs

Blas Fernández, University of Primorska Sanja Rukavina^{*}, University of Rijeka

Let Γ denote a bipartite graph with vertex set X and color partitions Y, Y', and assume that every vertex in Y has eccentricity $D \geq 3$. For $z \in X$ and non-negative integer i, let $\Gamma_i(z)$ denote the set of vertices in X which are at distance i from z. Graph Γ is 2-Y-homogeneous whenever for all i $(1 \leq i \leq D - 1)$ and for all $x \in Y$, $y \in \Gamma_2(x)$ and $z \in \Gamma_i(x) \cap \Gamma_i(y)$, the number of common neighbours of x and y that are at distance i - 1 from z is independent of the choice of x, y and z.

In this talk, we discuss the 2-Y-homogeneous condition of the incidence graphs of 2-designs. We prove that quasi-symmetric 2-designs that are quasi-symmetric 3- (v, k, λ) designs with intersection numbers 0 and $y = \lambda + 1$ are the only 2-designs which have 2-Y-homogeneous distance-biregular incidence graphs. Moreover, every 2-Y-homogeneous distance-biregular graph with eccentricity D = 3 is the incidence graph of such a design.

Keywords: distance-biregular graph, incidence graph, 2-design