A QC-LDPC code-based public-key cryptosystem resistant to reaction attacks

Paolo Santini

Università Politecnica delle Marche
p.santini@pm.univpm.it

Code-Based Cryptography Workshop 2018

Fort Lauderdale, Florida, USA
April 5-6, 2018
The use of codes for cryptographic purposes was initiated by McEliece in 1978, proposing a cryptosystem based on Goppa codes.

The main drawback of code-based cryptosystems is represented by the dimension of the public key.

In the binary case, the smallest key sizes are reached when quasi-cyclic (QC) sparse codes are used.

Low-density parity-check (LDPC) codes and moderate-density parity-check (MDPC) codes use decoders that are usually characterized by a small (but non negligible) decoding failure rate (DFR).
Reaction attacks on sparse codes

- Low-density parity-check (LDPC) codes and moderate-density parity-check (MDPC) codes use decoders that are usually characterized by a small (but non negligible) decoding failure rate (DFR).

- The decryption failure probability depends on the structure of the secret key: an opponent can estimate such a probability by observing Bob’s reactions during decryption of known ciphertexts.

Avoiding reaction attacks

Different ideas have been proposed, in order to avoid reaction attacks:

- use of ephemeral keys;
- choice of the system parameters in order to achieve negligible DFR values;
- use of decoding strategies that do not leak information about the secret key;

J.-P-Tillich,” The decoding failure probability of MDPC codes,” 2018.

Avoiding reaction attacks

Different ideas have been proposed, in order to avoid reaction attacks:

- use of ephemeral keys;
- choice of the system parameters in order to achieve negligible DFR values;
- use of decoding strategies that do not leak information about the secret key;
- decoding with indistinguishable parity check matrices (with respect to reaction attacks).

A monomial code is a QC code whose parity check matrix is in the form

\[
H = \begin{bmatrix}
H_{0,0} & H_{0,1} & \cdots & H_{0,n_0} \\
H_{1,0} & H_{1,1} & \cdots & H_{1,n_0} \\
\vdots & \vdots & \ddots & \vdots \\
H_{r_0-1,0} & H_{r_0-1,1} & \cdots & H_{r_0-1,n_0-1}
\end{bmatrix}
\]

with each \(H_i \) being a circulant with size \(p \) and weight 1.

It can be easily shown that at least \(r_0 + 1 \) rows in \(H \) are linearly dependent on the other rows, hence the code has dimension \(k \geq (n_0 - r_0)p + r_0 + 1 = k_0 p + r_0 + 1 \).
Exponent matrix

- Considering the homomorphism between size-p binary circulant matrices and polynomials in $\mathbb{F}_2[x]/(x^p - 1)$, each circulant block $H_{i,j}$ can be represented as $x^{w_{i,j}}$.
- The exponents of the monomial can be grouped in a matrix W, named exponent matrix, which is a compact representation of H

$$W = \begin{bmatrix}
w_{0,0} & w_{0,1} & \cdots & w_{0,n_0-1} \\
w_{1,0} & w_{1,1} & \cdots & w_{1,n_0-1} \\
\vdots & \vdots & \ddots & \vdots \\
w_{r_0-1,0} & w_{r_0-1,1} & \cdots & w_{r_0-1,n_0-1}
\end{bmatrix}$$
Key generation

Secret Key
- $r \times n$ parity check matrix H;
- $k \times k$ scrambling matrix S.

Public key
- Let G be a generator matrix for the secret code.
- The public key is $G' = S \cdot G$.

[136x200] Paolo Santini

Key generation

Secret Key
- $r \times n$ parity check matrix H;
- $k \times k$ scrambling matrix S.

Public key
- Let G be a generator matrix for the secret code.
- The public key is $G' = S \cdot G$.

Reducing the public key size
When a secure CCA2 conversion is used, G' can be in systematic form.

Encryption

- Alice generates a length-\(n\) vector \(e\) with weight \(t\).
- She encrypts a \(k\)-bit message \(u\) as

\[
x = u \cdot G' + e
\]

Decryption

Bob computes

\[
s = Hx^T = He^T
\]

He decodes \(s\), corrects \(e\) and recovers \(u\).
Encryption and decryption

Encryption

- Alice generates a length-\(n\) vector \(e\) with weight \(t\).
- She encrypts a \(k\)-bit message \(u\) as
 \[
 x = u \cdot G' + e
 \]

Decryption

- Bob computes \(s = H \cdot x^T = H \cdot e^T\).
- He decodes \(s\), corrects \(e\) and recovers \(u\).
The matrix G can have the following structure

Each matrix G_i has size $p \times (r_0 + 1)p$ and is in QC form.

G_a contains additional $r' = n - k - r_0p$ rows, needed in order to compensate the rank deficiency. These rows do not depend on the parity check matrix entries.

The scrambling matrix S has the following structure:

- Each matrix S_i is a dense circulant of size p.
- The presence of the identity $I_{r'}$ is due to G_a.

With these choices G' has the following structure

$$
\begin{align*}
G'_{0} & \\
G'_{1} & \\
\vdots & \\
G'_{K_{0-1}} & \\
\end{align*}
$$

with $G'_i = S_i \cdot G_i$.

The block G_a is not part of the public key.
A particular choice - Public key

- With these choices G' has the following structure

$$
\begin{array}{c}
G_0 \\
G_1' \\
\vdots \\
G_{k_0-1}' \\
G_a
\end{array}
$$

with $G_i' = S_i \cdot G_i$.

- The block G_a is not part of the public key.

Public key size

With blocks G_i' in systematic form, the public key size is

$$KS = k_0r_0p$$
Distance spectrum

- Given two ones at positions v_1 and v_2, the corresponding cyclic distance is

$$\delta(v_1, v_2) = \min \{ \pm(v_1 - v_2) \mod p \}$$

- The **distance spectrum** of a circulant matrix A is the set of distances produced by couples of ones in a row of A.

- We say that a distance d has multiplicity $\mu(d)$ if there are $\mu(d)$ distinct couples of ones at distance d.

Given two ones at positions v_1 and v_2, the corresponding cyclic distance is

$$\delta(v_1, v_2) = \min \{ \pm (v_1 - v_2) \mod p \}$$

The distance spectrum of a circulant matrix A is the set of distances produced by couples of ones in a row of A.

We say that a distance d has multiplicity $\mu(d)$ if there are $\mu(d)$ distinct couples of ones at distance d.

The decoding failure rate (DFR) depends on the number of common distances between e and H.

Relation between distance spectrum and DFR

- We can write $\mathbf{e} = [\mathbf{e}_0, \cdots, \mathbf{e}_{n_0-1}]$ and $\mathbf{s} = [\mathbf{s}_0, \cdots, \mathbf{s}_{r_0-1}]$, with $s_j = \sum_{i=0}^{n_0-1} H_{j,i} \cdot e_i^T$.
- Common distances between \mathbf{e} and \mathbf{H} cause cancellations in the computation of the blocks s_j.
We can write $e = [e_0, \cdots, e_{n_0-1}]$ and $s = [s_0, \cdots, s_{r_0-1}]$, with $s_j = \sum_{i=0}^{n_0-1} H_{j,i} \cdot e_i^T$.

Common distances between e and H cause cancellations in the computation of the blocks s_j.

Observation #1

The DFR depends on the syndrome weight.
Relation between distance spectrum and DFR

- We can write $e = [e_0, \cdots, e_{n_0-1}]$ and $s = [s_0, \cdots, s_{r_0-1}]$, with $s_j = \sum_{i=0}^{n_0-1} H_{j,i} \cdot e_i^T$.
- Common distances between e and H cause cancellations in the computation of the blocks s_j.

Observation #1
The DFR depends on the syndrome weight.

Observation #2
Since the whole error vector contributes to the computation of every syndrome block, an opponent cannot know the positions of blocks where cancellations occurred.
The distances in H are uniquely defined by W.

Distances can only be defined when considering two different columns in W.

Let $\lambda_{i,j}(W)$ be the set of distances between the i-th and j-th columns of W: the distance spectrum $\Lambda(W)$ is defined as the array containing all the sets $\lambda_{i,j}(W)$.

Example: for $p = 13$ and $W = \begin{bmatrix} 1 & 4 & 5 \\ 3 & 11 & 0 \end{bmatrix}$,

$\Lambda(W) = \begin{bmatrix} 2 & 4 & 13 \\ 4 & 13 & 11 \\ 11 & 13 & 5 \\ 13 & 5 & 3 \\ 5 & 3 & 1 \\ 3 & 1 & 4 \\ 1 & 4 & 5 \\ 4 & 11 & 0 \\ 11 & 0 & 3 \\ 0 & 3 & 11 \\ 3 & 11 & 0 \\ 11 & 0 & 3 \\ 0 & 3 & 11 \\ 3 & 11 & 0 \end{bmatrix}$.
Distance spectrum for monomial codes

- The distances in \mathbf{H} are uniquely defined by \mathbf{W}.
- Distances can only be defined when considering two different columns in \mathbf{W}.
- Let $\lambda_{i,j}(\mathbf{W})$ be the set of distances between the i-th and j-th columns of \mathbf{W}: the distance spectrum $\Lambda(\mathbf{W})$ is defined as the array containing all the sets $\lambda_{i,j}(\mathbf{W})$.
- Example: for $p = 13$ and $\mathbf{W} = \begin{bmatrix} 1 & 4 & 5 \\ 3 & 11 & 0 \end{bmatrix}$

$$
\Lambda(\mathbf{W}) = \begin{bmatrix}
- & \{3, 5\} & \{3, 4\} \\
\{3, 5\} & - & \{1, 2\} \\
\{3, 4\} & \{1, 2\} & -
\end{bmatrix}
$$
The knowledge of the spectrum $\Lambda(\mathbf{W})$ can be used to build a matrix $\hat{\mathbf{H}} = \mathbf{\Pi} \cdot \mathbf{H}$, with $\mathbf{\Pi}$ being a permutation matrix.

$\hat{\mathbf{H}}$ can be used to decode intercepted cyphertexts:

1. the opponent computes

$$\hat{s} = \hat{\mathbf{H}} \cdot \mathbf{x}^T =$$

$$= \mathbf{\Pi} \cdot \mathbf{H} (\mathbf{u} \cdot \mathbf{G}' + \mathbf{e})^T =$$

$$= \mathbf{\Pi} \cdot \mathbf{H} \cdot \mathbf{e}^T$$

2. decoding of \hat{s} through $\hat{\mathbf{H}}$ returns \mathbf{e}.
The knowledge of the spectrum $\Lambda(W)$ can be used to build a matrix $\hat{H} = \Pi \cdot H$, with Π being a permutation matrix.

\hat{H} can be used to decode intercepted ciphertexts:

1. the opponent computes

$$\hat{s} = \hat{H} \cdot x^T = \Pi \cdot H (u \cdot G' + e)^T = \Pi \cdot H \cdot e^T$$

2. decoding of \hat{s} through \hat{H} returns e.

Let \hat{W} be the exponent matrix associated to \hat{H}: this matrix can be reconstructed from the distance spectrum $\Lambda(W)$.
Reconstructing the exponent matrix

\[G \leftarrow \text{graph with node 0} \]
\[
\text{for } j \in \{0, 1, \cdots, n_0 - 1\}, \ d \in \lambda_{0,j}(H) \ 	ext{do}
\]
\[
\text{for } b \in \{0, 2, \cdots, 2r_0 - 2\} \ 	ext{do}
\]
\[
z_j^{(b)} = (j - 1)p + [(p - d) \mod p]
\]
\[
z_j^{(b+1)} = (j - 1)p + d
\]

Augment \(G \) with nodes \(z_j^{(b)}, z_j^{(b+1)} \)

Augment \(G \) with edges \(\left(0, z_j^{(b)}\right), \left(0, z_j^{(b+1)}\right) \)

\[
\text{for } i \in \{1, \cdots, n_0 - 2\}, j \in \{i + 1, \cdots, n_0\} \ 	ext{do}
\]
\[
\text{for } b_i \in \{0, 1, \cdots, 2r_0 - 1\}, b_j \in \{0, 1, \cdots, 2r_0 - 1\} \ 	ext{do}
\]
\[
\text{if } \delta \left(z_i^{(b_i)}, z_j^{(b_j)}\right) \in \lambda_{i,j} \ 	ext{then}
\]

Augment \(G \) with edge \(\left(z_i^{(b_i)}, z_j^{(b_j)}\right) \)
Graph properties

- The algorithm builds the graph associated to the matrix \hat{W} having all zeros in the first column; this matrix can be called the *standard form* of W and denoted as W^*.
Graph properties

- The algorithm builds the graph associated to the matrix \hat{W} having all zeros in the first column; this matrix can be called the *standard form* of W and denoted as W^*.

- Every row of W^* is identified by a size-n_0 clique in G which contains the node 0, and corresponds to at least two cliques $\zeta = \{z_0, z_1, \ldots, z_{n_0-1}\}$ and $\zeta^* = \{z_0^*, z_1^*, \ldots, z_{n_0-1}^*\}$, such that

$$z_i^* = p \left\lfloor \frac{z_i}{p} \right\rfloor + [(p - z_i) \mod p]$$
Graph properties

- The algorithm builds the graph associated to the matrix \hat{W} having all zeros in the first column; this matrix can be called the *standard form* of W and denoted as W^*.

- Every row of W^* is identified by a size-n_0 clique in G which contains the node 0, and corresponds to at least two cliques $\zeta = \{z_0, z_1, \ldots, z_{n_0-1}\}$ and $\zeta^* = \{z_0^*, z_1^*, \ldots, z_{n_0-1}^*\}$, such that

$$z_i^* = p \left\lfloor \frac{z_i}{p} \right\rfloor + [(p - z_i) \mod p]$$

- The graph G cannot contain an edge between two nodes z_i and z_j such that $\left\lfloor \frac{z_i}{p} \right\rfloor = \left\lfloor \frac{z_j}{p} \right\rfloor$: the maximum number of size-n_0 cliques in the graph is equal to p^{n_0-1}.
Graph properties

Example of the graph G associated to a code with $n_0 = 5$, $r_0 = 2$, $p = 67$, with exponent matrix $W = \begin{bmatrix} 47 & 18 & 6 & 46 & 63 \\ 2 & 3 & 55 & 21 & 2 \end{bmatrix}$.
A special class of monomial codes

Exponent matrix generation

1. choose p as a prime;
2. randomly pick $y = \left[y_0, y_1, \cdots, y_{\lceil \frac{p}{2} \rceil - 1} \right]$, with $y_i \in \mathbb{N}, y_i \in [0; p - 1]$;
3. randomly pick a permutation $s = [s_0, s_1, \cdots, s_{p-1}]$ of the vector $[0, 1, \cdots, p - 1]$;
4. randomly pick a permutation $q = \left[q_0, q_1, \cdots, q_{\lceil \frac{p}{2} \rceil - 1} \right]$ of the vector $[0, 1, \cdots, \lfloor \frac{p}{2} \rfloor]$;
5. for $i = 0, 1, \cdots, p$, compute the i-th column of W as
 \[y^T + s_i q^T \mod p \]
Theorem: all the exponent matrices constructed with the previous procedure satisfy the property

$$\lambda_{i,j}(W) = \left\{0, 1, 2, \cdots, \left\lfloor \frac{p}{2} \right\rfloor \right\}, \ \forall i, j$$

Any two nodes $z_i > 0$ and $z_j > 0$ such that $\lfloor z_i p \rfloor \neq \lfloor z_j p \rfloor$ are connected by an edge: the associated graph has p cliques of size n_0. Indistinguishable secret keys

The distance spectrum is the same for all the secret exponent matrices.
Theorem: all the exponent matrices constructed with the previous procedure satisfy the property

\[\lambda_{i,j}(W) = \left\{ 0, 1, 2, \cdots, \left\lfloor \frac{p}{2} \right\rfloor \right\}, \ \forall i, j \]

Any two nodes \(z_i \geq 0 \) and \(z_j > 0 \) such that \(\left\lfloor \frac{z_i}{p} \right\rfloor \neq \left\lfloor \frac{z_j}{p} \right\rfloor \) are connected by an edge: the associated graph has \(p^{n_0-1} \) cliques of size \(n_0 \).
Theorem: all the exponent matrices constructed with the previous procedure satisfy the property

\[\lambda_{i,j}(W) = \left\{ 0, 1, 2, \ldots, \left\lfloor \frac{p}{2} \right\rfloor \right\}, \quad \forall i, j \]

Any two nodes \(z_i \geq 0 \) and \(z_j > 0 \) such that \(\left\lfloor \frac{z_i}{p} \right\rfloor \neq \left\lfloor \frac{z_j}{p} \right\rfloor \) are connected by an edge: the associated graph has \(p^{n_0-1} \) cliques of size \(n_0 \).

Indistinguishable secret keys

The distance spectrum is the same for all the secret exponent matrices.
The i-th column of W^* can be expressed as

$$w_i^* = v_i^* q^T \mod p$$

where $v_0^* = 0$ and $[v_1^*, v_2^*, \cdots, v_{p-1}^*]$ corresponds to a permutation of the integers $\{1, 2, \cdots, p - 1\}$.

The vector q^T is a permutation of the integers in $[0, 1, \cdots, \left\lfloor \frac{p}{2} \right\rfloor]$: different configurations of q result in row permuted versions of W^*.
The i-th column of W^* can be expressed as

$$w_i^* = v_i^* q^T \mod p$$

where $v_0^* = 0$ and $[v_1^*, v_2^*, \cdots, v_{p-1}^*]$ corresponds to a permutation of the integers $\{1, 2, \cdots, p - 1\}$.

The vector q^T is a permutation of the integers in $[0, 1, \cdots, \lfloor \frac{p}{2} \rfloor]$: different configurations of q result in row permuted versions of W^*.

The number of standard exponent matrices is equal to $N_W = (p - 1)!$.
Theorem: Let $W^{(0)}$ and $W^{(1)}$ be two exponent matrices generated according to the previous procedure, with $v^{(1)} \neq v^{(1)}$, and let $W^*(0)$ and $W^*(1)$ be their corresponding matrices in standard form. Then, $W^*(0)$ and $W^*(1)$ cannot be row permuted versions of the same matrix.
Secret key cardinality

- **Theorem:** Let $W^{(0)}$ and $W^{(1)}$ be two exponent matrices generated according to the previous procedure, with $v^{(1)} \neq v^{(1)}$, and let $W^*(0)$ and $W^*(1)$ be their corresponding matrices in standard form. Then, $W^*(0)$ and $W^*(1)$ cannot be row permuted versions of the same matrix.

- Only one matrix, among all the possible $N_W = (p - 1)!$ ones, is a parity check matrix of the public code.
Theorem: let \(W^{(0)} \) and \(W^{(1)} \) be two exponent matrices generated according to the previous procedure, with \(v^{(1)} \neq v^{(1)} \), and let \(W^{*,(0)} \) and \(W^{*,(1)} \) be their corresponding matrices in standard form. Then, \(W^{*,(0)} \) and \(W^{*,(1)} \) cannot be row permuted versions of the same matrix.

Only one matrix, among all the possible \(N_W = (p - 1)! \) ones, is a parity check matrix of the public code.

Brute-force equivalent security

The opponent cannot obtain information about the secret key: the only way of distinguishing the secret key is testing all possible candidates, whose number is equal to \(N_W \).
Proposed parameters require a number of operations $\geq 2^\lambda$, $\lambda \in \{80, 128, 256\}$, to run attacks on a classical computer.

<table>
<thead>
<tr>
<th>λ</th>
<th>p</th>
<th>n_0</th>
<th>r_0</th>
<th>t</th>
<th>N_W</th>
<th>K_s (kB)</th>
</tr>
</thead>
<tbody>
<tr>
<td>80</td>
<td>103</td>
<td>103</td>
<td>52</td>
<td>84</td>
<td>2^{538}</td>
<td>34.14</td>
</tr>
<tr>
<td>128</td>
<td>137</td>
<td>137</td>
<td>69</td>
<td>132</td>
<td>2^{773}</td>
<td>80.36</td>
</tr>
<tr>
<td>256</td>
<td>257</td>
<td>257</td>
<td>129</td>
<td>261</td>
<td>2^{1684}</td>
<td>530.45</td>
</tr>
</tbody>
</table>
Conclusions and future works

- The proposed system achieves security against known reaction attacks, even with a non negligible DFR.
- The resulting key sizes are smaller than the ones of Goppa codes, but still too large with respect to other QC codes based systems.
Thanks for the attention