LEDAkem and LEDApkc: key encapsulation and public-key cryptography based on QC-LDPC codes

Paolo Santini

Università Politecnica delle Marche p.santini@pm.univpm.it

Code-Based Cryptography Workshop 2018

Fort Lauderdale, Florida, USA April 5-6, 2018

Introduction

- Code-based public-key cryptosystems were introduced by McEliece in 1978.
- In 1986 Niederreiter introduced another code-based public-key cryptosystem in the syndrome domain, while McEliece works in the codeword domain.
- The main drawback of these systems is represented by the dimension of the public key.

- R. McEliece, "Public-Key System Based on Algebraic Coding Theory," DSN Progress Report 44, pp. 114–116, 1978.
- H. Niederreiter, "Knapsack-type cryptosystems and algebraic coding theory," Problems of Control and Information Theory, vol. 15, pp. 159–166, 1986.
- Y. X. Li, R. H. Deng and X. M. Wang, "On the equivalence of McEliece's and Niederreiter's public-key cryptosystems," IEEE Trans. Inf. Theory, vol. 40, no. 1, pp. 271–273, Jan 1994.

Alternatives to Goppa codes

Alternatives to Goppa codes

Alternatives to Goppa codes

LEDAkem and LEDApkc

- LEDAkem and LEDApkc are two proposals for the NIST competition, based on QC-LDPC codes.
- LEDAkem (Low dEnsity parity-check coDe-bAsed key encapsulation mechanism):
 - Key Encapsulation Mechanism (KEM) built upon the Niederreiter framework.

- E. Persichetti, "Secure and anonymous hybrid encryption from coding theory," in Post-Quantum Cryptography, P. Gaborit, Ed. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013, pp. 174 - 187.
- M. Baldi, A. Barenghi, F. Chiaraluce, G. Pelosi, and P. Santini: "LEDAkem: first round submission to the NIST post-quantum cryptography call," November 2017.

LEDAkem and LEDApkc

- LEDAkem and LEDApkc are two proposals for the NIST competition, based on QC-LDPC codes.
- LEDAkem (Low dEnsity parity-check coDe-bAsed key encapsulation mechanism):
 - Key Encapsulation Mechanism (KEM) built upon the Niederreiter framework.
- LEDApkc (Low-dEnsity parity-check coDe-bAsed public-key cryptosystem):
 - Public Key Cryptosystem (PKC) built upon the McEliece framework.
- E. Persichetti, "Secure and anonymous hybrid encryption from coding theory," in Post-Quantum Cryptography, P. Gaborit, Ed. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013, pp. 174 - 187.
- M. Baldi, A. Barenghi, F. Chiaraluce, G. Pelosi, and P. Santini: "LEDAkem: first round submission to the NIST post-quantum cryptography call," November 2017.
- M. Baldi, A. Barenghi, F. Chiaraluce, G. Pelosi, and P. Santini: "LEDApkc: first round submission to the NIST post-quantum cryptography call," November 2017.

Paolo Santini

Secret and public codes building blocks

• The secret code is an [n, k] QC-LDPC code, with $n = n_0 p$ and $k = (n_0 - 1)p$, with parity check matrix in the form

$$\textbf{H} = [\textbf{H}_0, \textbf{H}_1, \cdots, \textbf{H}_{n_0-1}]$$

with each \mathbf{H}_i being a circulant matrix of size p and weight $d_v \ll p$.

Secret and public codes building blocks

• The secret code is an [n, k] QC-LDPC code, with $n = n_0 p$ and $k = (n_0 - 1)p$, with parity check matrix in the form

$$\mathbf{H} = [\mathbf{H}_0, \mathbf{H}_1, \cdots, \mathbf{H}_{n_0-1}]$$

with each \mathbf{H}_i being a circulant matrix of size p and weight $d_v \ll p$.

 The public code is constructed upon H and a n × n matrix Q, in QC-form, with row and column weight equal to m ≪ n.

LEDApkc - Key generation

Secret key

- Generate a random $p \times n$ binary block circulant matrix $\mathbf{H} = [\mathbf{H}_0, \dots, \mathbf{H}_{n_0-1}]$ with column weight $d_v \ll p$.
- **2** Generate a random, non-singular, $n \times n$ binary block circulant matrix **Q** with row weight $m \ll n$.
- $SK = \{\mathbf{H}, \mathbf{Q}\}$

LEDApkc - Key generation

Secret key

- Generate a random $p \times n$ binary block circulant matrix $\mathbf{H} = [\mathbf{H}_0, \dots, \mathbf{H}_{n_0-1}]$ with column weight $d_v \ll p$.
- **2** Generate a random, non-singular, $n \times n$ binary block circulant matrix **Q** with row weight $m \ll n$.

$$\mathbf{S} \mathcal{K} = \{\mathbf{H}, \mathbf{Q}\}$$

Public key

- Compute $\mathbf{L} = \mathbf{H} \cdot \mathbf{Q} = [\mathbf{L}_0, \dots, \mathbf{L}_{n_0-1}].$
- **2** Compute $\mathbf{M} = (\mathbf{L}_{n_0-1})^{-1} \cdot \mathbf{L} = [\mathbf{M}_I, \mathbf{I}_p].$
- **3** $PK = {\mathbf{M}_{I}}$

LEDApkc - Encryption

- Alice gets Bob's public key M₁.
- 2 She generates a random length-n error vector **e** with weight t.
- **(3)** She encrypts any length-k block **u** as

$$\mathbf{x} = \mathbf{u} \cdot \left[\mathbf{I}_{(n_0 - 1)p}, \mathbf{M}_I^T \right] + \mathbf{e} =$$
$$= \mathbf{u} \cdot \mathbf{G}' + \mathbf{e}$$

LEDApkc - Encryption

- Alice gets Bob's public key M₁.
- She generates a random length-n error vector e with weight t.
- **(3)** She encrypts any length-k block **u** as

$$\mathbf{x} = \mathbf{u} \cdot \left[\mathbf{I}_{(n_0 - 1)p}, \mathbf{M}_I^T \right] + \mathbf{e} =$$
$$= \mathbf{u} \cdot \mathbf{G}' + \mathbf{e}$$

CCA2 conversion

The use of a proper conversion is necessary to achieve indistinguishability under adaptive chosen cyphertext attack (IND-CCA2) security.

K. Kobara, H. Imai, "Semantically secure McEliece public-key cryptosystems — conversions for McEliece PKC," PKC 2001, vol. 1992 of Springer LNCS, pp. 19–35, 2001.

LEDApkc - Decryption

Bob computes

$$\begin{aligned} \mathbf{s} &= \mathbf{x} \cdot \mathbf{L}^T = \\ &= \left(\mathbf{u} \cdot \mathbf{G}' + \mathbf{e} \right) \cdot \mathbf{L}^T = \\ &= \mathbf{e} \cdot \mathbf{L}^T \end{aligned}$$

- **2** Bob applies Q-decoding on **s** and obtains **e**.
- 3 Bob computes $\mathbf{x} + \mathbf{e} = \mathbf{u} \cdot [\mathbf{I}_k, \mathbf{M}_l]$, and looks at the first k bits to recover the plaintext.

LEDAkem

- LEDAkem shares the same secret/public code structure of LEDApkc, but is built upon the Niederreiter framework.
- Ephemeral keys are used.
- The system achieves Indistinguishability under Chosen Plaintext Attack (IND-CPA).
- Since LEDApkc and LEDAkem are built upon the same code, they are equivalent from the security point of view.
- M. Baldi, A. Barenghi, F. Chiaraluce, G. Pelosi, and P. Santini: "LEDAkem: first round submission to the NIST post-quantum cryptography call," November 2017.
- M. Baldi, A. Barenghi, F. Chiaraluce, G. Pelosi, and P. Santini, "LEDAkem: a post-quantum key encapsulation mechanism based on QC-LDPC codes," CoRR, vol. abs/1801.08867, 2018.

Information set decoding attacks

- Recovering the error vector used by Alice results in solving a syndrome decoding problem (SDP) instance.
- The best SDP solvers are information set decoding (ISD) algorithms: given a code with length *n* and dimension *k*, searching for an error weight with weight *t* requires a complexity C_{ISD}(*n*, *k*, *t*).
- Modern ISD algorithms are based on the fact that the general decoding problem can be related to the one of finding low weight-codewords in a code.
- E. Prange, "The use of information sets in decoding cyclic codes," Information Theory, IRE Transactions on, vol. 8, no. 5, pp. 5–9, 1962.
- J. Leon, "A probabilistic algorithm for computing minimum weights of large error-correcting codes," IEEE Trans. Inform. Theory, vol. 34, no. 5, pp. 1354–1359, 1988.

A. Becker, A. Joux, A. May, and A. Meurer, "Decoding random binary linear codes in 2^{n/20}: How 1 + 1 = 0 improves information set decoding," Advances in Cryptology - EUROCRYPT 2012, vol. 7237 of Springer LNCS, pp. 520–536, 2012.

Information set decoding attacks

- The public code admits **L**, whose rows have weight $\leq n_0 m d_v$, as parity check matrix.
- An ISD algorithm might be used to search for rows of L in the dual of the public code.

Information set decoding attacks

- The public code admits L, whose rows have weight ≤ n₀md_v, as parity check matrix.
- An ISD algorithm might be used to search for rows of L in the dual of the public code.

Work Factor of ISD attacks

$$WF_{DA} = \frac{C_{ISD}(n, k, t)}{\sqrt{p}}, \quad WF_{KRA} = \frac{C_{ISD}(n, n - k, n_0 m d_v)}{p}$$

- N. Sendrier, "Decoding one out of many," in Proc. PQCrypto 2011, vol. 7071 of Springer LNCS, pp. 51–67, 2011.
- D. J. Bernstein, "Grover vs. McEliece," in Proc. PQCrypto 2010, vol. 6061 of Springer LNCS, pp. 73–80, 2010.
- S.H.S. de Vries, "Achieving 128-bit Security against Quantum Attacks in OpenVPN," Master Thesis, University of Twente, 2016.

Reaction attacks

- The DFR depends on the number of overlapping ones between the error vector and the rows of **H** and **Q**.
- The opponent can produce cyphertexts and send them to Bob; the analysis of Bob's decoding failures reveal information about the distances among the ones in the secret key.

- Q. Guo, T. Johansson, P. Stankovski, "A Key Recovery Attack on MDPC with CCA Security Using Decoding Errors," Advances in Cryptology ASIACRYPT 2016, vol. 10031 of Springer LNCS, pp. 789–815.
- T. Fabšič, V. Hromada, P. Stankovski, P. Zajac, Q. Guo, T. Johansson, "A Reaction Attack on the QC-LDPC McEliece Cryptosystem," PQCrypto 2017, vol. 10346 of Springer LNCS, pp. 51–68.

Reaction attacks

- The DFR depends on the number of overlapping ones between the error vector and the rows of **H** and **Q**.
- The opponent can produce cyphertexts and send them to Bob; the analysis of Bob's decoding failures reveal information about the distances among the ones in the secret key.
- The minimum number of observed decoding failures, in order to make the attack successful, is in the order of 10⁵ or more.
- Q. Guo, T. Johansson, P. Stankovski, "A Key Recovery Attack on MDPC with CCA Security Using Decoding Errors," Advances in Cryptology ASIACRYPT 2016, vol. 10031 of Springer LNCS, pp. 789–815.
- T. Fabšič, V. Hromada, P. Stankovski, P. Zajac, Q. Guo, T. Johansson, "A Reaction Attack on the QC-LDPC McEliece Cryptosystem," PQCrypto 2017, vol. 10346 of Springer LNCS, pp. 51–68.

Avoiding reaction attacks

- Reaction attacks can be avoided by bounding the lifetime *M* of a key-pair (*M* corresponds to the number of cyphertexts encrypted/decrypted with the same key-pair):
 - M = 1 for LEDAkem (ephemeral keys);
 - $M = 10^4 \cdot DFR^{-1}$ for LEDApkc.

Avoiding reaction attacks

- Reaction attacks can be avoided by bounding the lifetime *M* of a key-pair (*M* corresponds to the number of cyphertexts encrypted/decrypted with the same key-pair):
 - M = 1 for LEDAkem (ephemeral keys);
 - $M = 10^4 \cdot DFR^{-1}$ for LEDApkc.
- A new reaction attack on LEDApkc has been recently proposed:
 - **1** the opponent builds candidates for \mathbf{Q}^{T} ;
 - 2) a set of candidates for $\mathbf{G} = \mathbf{G}' \cdot \mathbf{Q}^T$ is efficiently computed;
 - an ISD algorithm is applied on each candidate to search for rows of H.

T. Fabsic, V. Hromada, and P. Zajac, "A reaction attack on LEDApkc," Cryptology ePrint Archive, Report 2018/140, 2018, https://eprint.iacr.org/2018/140.

Avoiding reaction attacks

• The Work Factor of this attack can be estimated as

$$WF_{FHZ} \ge 2^{n_0 [n_0 - n^{(1)}]} \cdot \rho^{n_0^2 - n_0} \cdot C_{ISD}(n, n - k, n_0 d_v)$$

with $n^{(1)}$ being the number of weight-1 blocks in a row of **Q**.

• A proper parameters choice guarantees that WF_{FHZ} is above the target security level.

Avoiding reaction attacks

• The Work Factor of this attack can be estimated as

$$WF_{FHZ} \ge 2^{n_0 [n_0 - n^{(1)}]} \cdot \rho^{n_0^2 - n_0} \cdot C_{ISD}(n, n - k, n_0 d_v)$$

with $n^{(1)}$ being the number of weight-1 blocks in a row of **Q**.

• A proper parameters choice guarantees that WF_{FHZ} is above the target security level.

Conservative lifetime of a key-pair

All reaction attacks can be avoided by choosing $M = DFR^{-1}$.

Rationale of the Q-decoder

• Decoding is performed on the syndrome

$$\mathbf{s} = \mathbf{e} \cdot \mathbf{L}^{\mathcal{T}} = \mathbf{e} \cdot \mathbf{Q}^{\mathcal{T}} \cdot \mathbf{H}^{\mathcal{T}} = \mathbf{e}' \cdot \mathbf{H}^{\mathcal{T}}$$

where $\mathbf{e}' = \mathbf{e} \cdot \mathbf{Q}^{T}$ is the expanded error vector to be found.

• Let $\phi(\mathbf{e})$ denote the support of \mathbf{e} and \mathbf{q}_j be the *j*-th row of \mathbf{Q}^T , then

$$\mathbf{e}' = \sum_{j \in \phi(\mathbf{e})} \mathbf{q}_j$$

Rationale of the Q-decoder

• Decoding is performed on the syndrome

$$\mathbf{s} = \mathbf{e} \cdot \mathbf{L}^{\mathcal{T}} = \mathbf{e} \cdot \mathbf{Q}^{\mathcal{T}} \cdot \mathbf{H}^{\mathcal{T}} = \mathbf{e}' \cdot \mathbf{H}^{\mathcal{T}}$$

where $\mathbf{e}' = \mathbf{e} \cdot \mathbf{Q}^{T}$ is the expanded error vector to be found.

• Let $\phi(\mathbf{e})$ denote the support of \mathbf{e} and \mathbf{q}_j be the *j*-th row of \mathbf{Q}^T , then

$$\mathbf{e}' = \sum_{j \in \phi(\mathbf{e})} \mathbf{q}_j$$

The rows of Q^T are sparse (wt(q_i) = m ≪ n), hence their supports are (almost) disjoint.

Rationale of the Q-decoder

• Decoding is performed on the syndrome

$$\mathbf{s} = \mathbf{e} \cdot \mathbf{L}^{\mathcal{T}} = \mathbf{e} \cdot \mathbf{Q}^{\mathcal{T}} \cdot \mathbf{H}^{\mathcal{T}} = \mathbf{e}' \cdot \mathbf{H}^{\mathcal{T}}$$

where $\mathbf{e}' = \mathbf{e} \cdot \mathbf{Q}^{T}$ is the expanded error vector to be found.

• Let $\phi(\mathbf{e})$ denote the support of \mathbf{e} and \mathbf{q}_j be the *j*-th row of \mathbf{Q}^T , then

$$\mathbf{e}' = \sum_{j \in \phi(\mathbf{e})} \mathbf{q}_j$$

- The rows of Q^T are sparse (wt(q_i) = m ≪ n), hence their supports are (almost) disjoint.
- Also **e** is sparse $(wt(\mathbf{e}) = t \ll n)$, hence

$$\operatorname{wt}(\mathbf{e}') \approx mt$$

Rationale of the Q-decoder

- Let us consider the (integer) inner product $\rho = \mathbf{e}' * \mathbf{q}_v$:
 - if v ∉ φ(e), then the supports of e' and q_ν have a small intersection and ρ is small;
 - if $v \in \phi(\mathbf{e})$, then \mathbf{q}_v is one of the rows forming \mathbf{e}' , hence ρ is large.
- As in BF decoding, an estimate of e' is obtained by computing the (integer) inner product between the syndrome and each column of H

$$\mathbf{\Sigma} = \mathbf{s} * \mathbf{H}$$

and thresholding the vector $\boldsymbol{\Sigma}$.

• So we can estimate $\phi(\mathbf{e})$ by replacing \mathbf{e}' with $\mathbf{\Sigma}$ to compute

$$\mathbf{R} = [\rho_0, \rho_1, \cdots, \rho_{n-1}] = \mathbf{\Sigma} * \mathbf{Q}$$

and thresholding the vector \mathbf{R} .

Algorithmic procedure

Initialization

 $\mathbf{s}^{(0)} = \mathbf{x} \cdot \mathbf{L}^{\mathcal{T}}, \mathbf{e}^{(0)} = \mathbf{0}$

Description of the *j***-th iteration Input:** $e^{(j-1)}, s^{(j-1)}$

- Compute $\boldsymbol{\Sigma} = [\sigma_0, \sigma_1, \cdots, \sigma_{n-1}] = \mathbf{s}^{(j-1)} * \mathbf{H}.$
- **2** Compute $\mathbf{R} = [\rho_0, \rho_1, \cdots, \rho_{n-1}] = \mathbf{\Sigma} * \mathbf{Q}$.
- Compute $\Psi = \{i \mid \rho_i \geq b^{(j)}\}.$
- **③** Update the error vector as $\mathbf{e}^{(j)} = \mathbf{e}^{(j-1)} + \mathbf{1}_{\Psi}$.
- **5** Update the syndrome as $\mathbf{s}^{(j)} = \mathbf{s}^{(j-1)} + \sum_{i \in \Psi} \mathbf{q}_i \cdot \mathbf{H}^T$.

Output: $e^{(j)}, s^{(j)}$

We define the following probabilities:

$$p_{ci}(t) = \sum_{j=0, j \text{ odd}}^{\min[n_0 d_v - 1, mt]} \frac{\binom{n_0 d_v - 1}{j} \binom{n - n_0 d_v}{mt - j}}{\binom{n - 1}{mt}}$$

$$p_{ic}(t) = \sum_{j=0, j \text{ even}}^{\min[n_0 d_v - 1, mt - 1]} \frac{\binom{n_0 d_v - 1}{j} \binom{n - n_0 d_v}{mt - j - 1}}{\binom{n - 1}{mt - 1}}$$

where:

- *p_{ci}(t)* is the probability that a codeword bit is error-free and a parity-check equation evaluates it wrongly;
- *p_{ic}(t)* is the probability that a codeword bit is in error and a parity-check equation evaluates it correctly.

• We consider the *i*-th bit and define the following probability

$$P\{e_{i} = 1|\rho_{i}\} = \left(1 + \frac{P\{e_{i} = 0, \rho_{i}\}}{P\{e_{i} = 1, \rho_{i}\}}\right)^{-1} = \frac{1}{1 + \frac{n-t}{t} \left[\frac{p_{ci}(t)}{p_{ic}(t)}\right]^{\rho_{i}} \left[\frac{1-\rho_{ci}(t)}{1-\rho_{ic}(t)}\right]^{md_{v}-\rho_{i}}}$$

• We define a margin $\Delta \ge 0$, such that

$$P\{e_i = 1|\rho_i\} > (1 + \Delta)P\{e_i = 0|\rho_i\}$$

 Increasing Δ increases the average number of iterations as well, but lowers the DFR.

• The optimal threshold value is chosen as

$$b = \min\left\{
ho_i \in [0; \textit{md}_v], \text{ s.t. } P\left\{e_i = 1|
ho_i
ight\} > rac{1+\Delta}{2+\Delta}
ight\}$$

• The average syndrome weight can be related to the weight of the error vector

$$E\left[\mathsf{wt}(\mathbf{s})\right] = \left[p_{ic}(t) + p_{ci}(t)\right]p$$

Flipping thresholds rule for the instance with $\lambda = 128$, $n_0 = 2$.

- The approach used for the determination of the thresholds is only based on statistical arguments, and can also be applied to a bit flipping (BF) decoder.
- The thresholds are precomputed and given as input to the decoder, in the form of a look-up table with few entries.
- The threshold values change throughout the iterations, depending on the observed syndrome weights.

Proposed parameters set

Proposed parameters sets for the NIST competition; the savings in the public key size are computed with respect to the case of a bit flipping (BF) decoder.

λ	n ₀	р	dv	m	t	DFR	PK reduction
128	2	27,779	17	7	224	$pprox$ 8.3 \cdot 10 ⁻⁹	pprox 47%
	3	18,701	19	7	141	$\lesssim 10^{-9}$	pprox 56%
	4	17,027	21	7	112	$\lesssim 10^{-9}$	pprox 57%
192	2	57, 557	17	11	349	$8\cdot \lesssim 10^{-8}$	pprox 63%
	3	41,507	19	11	220	$8\cdot \lesssim 10^{-8}$	pprox 64%
	4	35,027	17	13	175	$8\cdot \lesssim 10^{-8}$	pprox 76%
256	2	99,053	19	13	474	$\lesssim 10^{-8}$	pprox 63%
	3	72,019	19	15	301	$\lesssim 10^{-8}$	pprox 75%
	4	60,509	23	13	239	$\lesssim 10^{-8}$	pprox 70%

Number of iterations

Percentage of decoded messages as a function of the number of iterations, for the proposed instances with $\lambda = 128$, in the case of $\Delta = 0.3$.

Paolo Santini

Room for improvements

- Improve the decoding procedure, in order to achieve smaller public key sizes.
- $\bullet\,$ Exploit the structure of both H and Q in order to avoid reaction attacks:
 - proper parameters sets and decoding procedures might prevent known reactions attacks.
- Define an upper bound and/or a closed form expression for the DFR.

Thanks for the attention