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Abstract

The signed-bit representation of real numbersis like the binary representation,
but in addition to 0 and 1 you can also use —1. It lendsitself especially well to the
constructive (intuitionistic) theory of the real numbers. The first part of the paper
develops and studies the signed-bit equivalents of three common notions of areal
number: Dedekind cuts, Cauchy sequences, and regular sequences. Thistheory is
then applied to homomorphisms of Riesz spacesinto R.

1 Introduction

In[4], Coquand and Spitters studied the Stone-Yosidarepresentation theoremfor lattice
ordered vector spaces (Riesz spaces). They gave a constructive proof of this theorem
for separable, seminormed Riesz spaces which used Dependent Choice (DC). They
then asked whether DC is necessary and suggested a construction which would show
that it was. This question was answered in [10] and [8] along the lines they suggested.

In thinking about this question, we were led to representing real numbersin atree-
like structure. This representation is alot like the classical signed-bit representation,
a modification of the binary representation where —1 is allowed as well as 0 and 1.
The signed-bit representation is especially suitableto constructivism and computability
because you can show constructively (with DC) that every real number has a signed-bit
representation, but not that every real number has a binary representation.

The thrust of this paper (Section 2) is this signed-bit representation. In Sections 3
and 4, the representation is applied to various questions about real numbers and about
homomorphisms of Riesz spaces into R. The benefits of these applications include a
reformulation of the choice principles involved, a generalization from countable and
separable Riesz space to ones of arbitrary size, and a recasting of the issues in aform
more familiar to classical set theorists.



2 Signed-bit representations of real numbers
2.1 Threekindsof real numbers

We are interested in studying real numbers from a constructive point of view without
using countable choice principles. We consider three kinds of real numbers: Dedekind,
regular, and Cauchy (see aso [5] and [9]). Thelatter two kinds are given by sequences
of rational numbers(seebelow). A real number, simpliciter, isaDedekind real number,
that is, areal number is determined by a located Dedekind cut [3, Problem 2.6], [13,
p. 170]. A located Dedekind cut can be defined as a nonempty proper open subset
L of the rational numbers Q@ such that for all pairs of rationa numbersu < v, either
u€ Lorv¢ L. If risthereal number definedby L,then L = {u € Q : uw < r}. The
Dedekind real numbers are exactly the things that can be approximated coherently by
rational numbers.

If r isany real number, then for each positive integer n thereis arational number u
such that |u — r| < 1/n. Using countable choice, we could construct a sequence ¢ of
rational numbers so that |g,, — 7| < 1/n. Such a sequence ¢ is aregular sequencein

the sense that ) .
|Qm - Qn| S — + =
m n

for @l m and n. Note that a regular sequence is a Cauchy sequence, and we leave
it as an exercise to show that every Cauchy sequence converges to some real number.
Conversely, if aregular sequence g convergesto thereal number r, then g, — 7| < 1/n
for al n. Bishop [3] definesareal number to be aregular sequence of rational numbers.

Theorem 2.1 Let ¢ be a sequence of rational numbers and 1 a sequence of positive
integers. Then the following two conditions are equivalent

1. Forall¢,j,ifm > u; andn > p;, then

1 1
|qm _Q71,| <-+-.
? J

2. Thereisareal number r so that for all ¢, if m > pu;, then
|gm — 7] < 1/i.

Proof: If 1 holds, then ¢ is a Cauchy sequence, hence convergesto areal number r. If
m > u;, then

1 1
|Qm - Q71,| <-+-=
? J

whenever n > ;. In particular, this inequality holds for arbitrerily large values of n
and 7, S0 |¢m — 7| < 1/i. Conversely, suppose 2 holds. Then

1 1
|Qm_Qn|§|Qm_r|+|r—Qn|§{+3

foral m > pu; andnzujj



We say that 1« is a modulus of convergence for ¢ if either of the equivalent conditions
in Theorem 2.1 hold.

If ¢ isaregular sequence, then it has the modulus of convergence ., = m. Con-
versely, if p is a modulus of convergence for ¢, then the sequence ¢, is aregular
seguence converging to the limit » of g. So areal number r is the limit of a regular
sequence of rational numbers if and only if it is the limit of a sequence of rational
numbersthat has a modulus of convergence. We call such areal number aregular real
number. Troelstraand van Dalen [13] define a Cauchy real number to be what we are
caling here aregular real number.

Theorem 2.2 If r isaregular real number, then every sequence of rational numbers
converging to r has a modulus of convergence.

Proof: Let ¢ bearegular sequence of rational numbers convergingto . Let p bease-
quence of rational numbers convergingto r. We need to find amodulus of convergence
 for the sequence p.

Given m we define y,, as follows. Choose k so that |p, —r| < 1/6m for all
n > k. So,if n > k, we have

1
|Pn—Q3m|§|Pn—7“|+|7“—(J3m|<—m+—§

Let ., < k bethe smallest integer such that

1
|pn - q3m| S %

forn = pm,..., k. Then u,, isthe smallest integer for which the above inequality
holdsfor al n > p,,, SO i, doesnot depend on the choice of k.
It remainsto show that |p,, — | < 1/mforal n > p,,. But, if n > u,,, then

1
7= =

1 1
m  3m m

In particular, every sequence of rational numbers that converges to a rational number
has a modulus of convergence. Irrational numbers are also regular real numbers—in
fact, they have decimal expansions. By an irrational number we mean area number
such that |r — ¢| > 0 for each rational number ¢. It followsthat algebraic real numbers,
because they are either rational or irrational, are regular real numbers.

In the absence of countable choice, not every real number can bewritten asthelimit
of a sequence of rational numbers, regular or otherwise. A real number r that can be
so written is called a Cauchy real number because it is the limit of a Cauchy sequence
of rational numbers. Not every Cauchy real number is aregular real number (see[9]).



2.2 Thepseudotree

We want to consider thefollowing infinite tree-like structure T', the ternary pseudotree:

The structure continues infinitely far in all directions (left, right, up, and down). The
nodes are dyadic intervas (k/2", (k + 2)/2™) where k and n are integers. The de-
scendants of a node are its subintervals. For example, the bottom four nodes in the
figure could betheintervals (—1,0), (—1/2,1/2), (0,1),and (1/2,3/2). The children
(immediate descendants) of the node (0,1) are (0,1/2), (1/4,3/4),and (1/2,1).

The level of a node corresponds inversely to its radius. For instance, (0, 1) ison
level 1 because it has aradius of 271, In general, the nodes on level [ are those with
radius 2, and (hence) length 21—,

A path through T" corresponds exactly to a signed-bit representation of areal num-
ber.! Just as a number written in binary is a sequence of Os and 1s, indexed by Z,
in which all entries below some index n are 0, a signed-bit number, also known as a
signed-binary or signed-digit number, is such aZ-indexed sequence of 0s, 1s, and —1s.
The sequence a represents the number >°. a,2~%. No number has a unique representa-
tion. The corresponding path in T starts at the node of length 2™+2 with midpoint O.
At stage i the path goes left, middle, or right, depending on whether o ; is —1, 0, or 1
respectively. Actually, the only paths generated in this way are those that start at some
node with midpoint 0. Those with no such start, or no start at all, would not correspond
to a signed-bit representation in the sense described here.

If I is anode, we denote the three children of I by A1, pl, and pI (left, middle,
and right). An extreme descendant of I is anode of the form AT or p‘I for some .

2.3 ldealsin T and their real numbers

Givenarea number r, let O, be{I € T' | r € I}, theset of nodesin T that contain r.
Notethat O,. is closed downwards (under superset) and closed under join (intersection).
An o-ideal is a nonempty set O of nodes closed downwards and under join, such that
every node in O has a nonextreme descendant in O.

Theorem 2.3 Thefunctionr — O,. isabijectionfromthereal numbersto the o-ideals.

LApparently the first use of the ternary pseudotree for the signed-bit representation isin [1]. There T is
called the Stern-Brocot or Farey tree, even though we find enough difference between each of those trees and
T to warrant the use of a different name. For more on signed-bit representations themselves, see [14].



Proof: To prove that O, is an o-ideal, we must show that each node of O,. has a
nonextreme descendant in O... Suppose ((k — 1)/2™, (k +1)/2") € O,, thatis

k:—1< <k—|—1
r
2n 2n

Then there exists £’ and n’ such that

k—1<k’—1< <k’+1<k+1
on on ST Tow o

But thismakes ((k'—1)/2", (k'+1)/2"") anonextremedescendant of ((k—1)/2", (k+
1)/2")in O, Indeed, for k’/2" to be the midpoint of an extreme descendant, it must
be of theform

(2°(k — 1)+ 1) /2" or (2°(k+1)—1) /2"
sok/ =27~ (kF1)+1.But
2 (k1) 1>k >2" " (k—1)+1

To see that the function is a bijection, let O be an o-ideal. Then O defines a set
of nonempty open intervals closed under finite intersection and containing arbitrarily
small intervals. So thereis a unique real number r that is contained in al the closures
of intervalsin O. But because each openinterval J in O has anonextreme descendant,
the number r is contained in J itself. To seethat O = O,., suppose some dyadic open
interval J contains r. Then every sufficiently small dyadic interval that contains r is
containedin J. As O isadownset, J must bein O. 1

We can also consider the closed interval correlates. For areal number r, let C',. be
{I € T |r €I}, wherel isthe (topological) closureof I. The subset C,. isnot closed
under join, but it does satisfy the following closure conditions:

1. Eachnodein C, hasachildin C,.

2. Thenodes at each level in C,. are adjacent, and there are at most three of them.
3. I¢C.=1eC(,.
4

. If I'isanodeinC,,then A\ ¢ C, = pIl € C,.,andpl ¢ C, = X € C,.. (By
property 3, these are equivalent.)

5. If piI € C, for al i, then I is the leftmost member of three adjacent nodes
in the downset, and conversely. Same with p replaced by A and “leftmost” by
“rightmost”.

6. If two nodesof C. haveajoinin T, then that joinisin C,.



A c-ideal isanonempty set of nodes satisfying the six conditions above.

Theorem 2.4 Thefunctionr — C.. isabijection fromthereal numbersto the c-ideals.

Proof: Wefirst show that C'. isac-downset. Clearly 1, 2, and 6 hold. Property 3 holds
becauseif J isaclosed interval, thenr € J if and only if —d (r, J) > 0. To see 4, note
that if » € J, butr ¢ \J, thenr € p.J, and vice versa. For 5, notethat if » € p®J for
all 7, then r istheright endpoint of .J.

Now suppose that C is a c-downset. We first show that the intersection of the
intervals J € C is equa to {r} for some real number r. Since from 1 there are
arbitrarily small intervalsin C, it suffices to check the finite intersection property. So
let ' be afinite set of nodes of C'. If thereisanode J in C above all these nodes,
then J iscontained in I for al I € F', so the intersection is nonempty. Otherwise, by
6, there are two nodes in F' with no joinin T'. By 2 this can only happen if there are
three adjacent nodes in C, in which case there is a dyadic rationa in al the intervals
corresponding to nodes of 1.

We want to show that C = C,.. Asr € J forevery J € C,wehaveC C C,.. We
must show that if » € J, then J € C. By 3iit sufficesto assume J ¢ C' and derive a
contradiction. There is some node I at the level of J thatisin C. So I # J, by the
assumption, and also r € 1. If the node I is not next to .J, then r is the dyadic rational
which is the common endpoint of 7 and .J . This contradicts 5: al the children of I
in C' must lean toward J because they al contain r, so by 5 there are three adjacent
nodesin C. So I and J are next to each other. Similarly, if I's other neighbor K were
in C, then al of K's children must lean toward J, contradicting 5. By the adjacency
of thenodesin C (property 2) I istheonly nodein C at that level. But that also can’t
happen: If AI € C then I's left neighbor isin C by downward closure, so A ¢ C.
Symmetricaly, pI ¢ C. By 4, both pI and \I arein C, thefinal contradiction.

Since every c-downset is of the form C'., the function is onto. It's one-to-one, be-
causeif r # ' thenC,. # C,. 1

If » isareal number, then the infinite pathsin C,. correspond exactly to the signed-
bit representations of . Of course we may not be able to find any such path in the
absence of choice. With choice, property 1 guarantees that every node of C',. is con-
tained in some infinite path. The midpoints of the nodes of an infinite path in C',. form
a sequence which is exactly what Heyting [7] calls a canonical number-generator, so
we see that the latter is essentially a signed-digit representation.

Theorem 2.5 For each real number r, the following are equivalent:
1. O, iscountable
2. O, contains an infinite path
3. C,. contains an infinite path

4, r isaregular real number.



Proof: 1) implies 2): Starting from any node in O ., taking the first child and first
parent in the counting of O,. produces an infinite path.

2) implies3): O, C C..

3) implies 4): The midpoints of the intervals of any infinite path in C,. form a
regular sequence converging to r.

4) implies 1): Let J be somenodein O,.. Let J,, be acounting of .J's siblings and
their descendants such that each node occursinfinitely often. Let c,,, be a sequence of
rational numbersso that |c,,, — | < 1/m. At stagei, let s; = J; if the closed interval
[ei — 1/i, ¢; +1/i] is contained in .J;, undefined otherwise. This gives a function s
from a detachable subset of N onto that part of O.. at J’s level and beyond, so the latter
is countable by definition. It iseasy to alter that counting to include their ancestorstoo.

Note that the conditionsin Theorem 2.5 are not equivalent to C',.’s being countabl e;

Theorem 2.6 If C,. is countable for all regular real numbers r, then for each binary
sequence «, there exists a binary sequence 8 such that «,,, = 0 for all m if and only if
Bm = 1 for some m.

Proof: Let o be abinary sequenceand set r = > v, /2™. L&t C, = {c1, ¢2,¢3,...}.
Define §,, = 1if ¢, = (—1,0), and 3,,, = 0 otherwise. Note a,,, = 0 for al m if
andonly if r = 0. If r = 0, then (—1,0) € C, s0 3,, = 1 for some m. Conversely, if
(—=1,0) € C,, thenr < 0, hencer = 0.1

The conclusion of Theorem 2.6 is aform of the weak Kripke schema[13, p. 241].
Thisconclusion, together withMP (Markov’sPrinciple), implies LPO (thelimited prin-
ciple of omniscience): any binary sequence « either containsaoneor is al zeros. In-
deed, because the sequence « + 3 cannot be al zeros, by MP it must contain a nonzero
eement oy, + Bm; if oy, = 1 than o containsa 1, and if 3,, = 1 then o is all Os.
Since MP holdsin the recursive interpretation of constructive mathematics, the conclu-
sion of Theorem 2.6 would imply the solvahility of the halting problem. Hence in the
recursive interpretation the conditions of Theorem 2.5 are not equivalent to C',.’s being
countable. It would be nice to have a clean characterization of those real numbersr for
which C'. is countable.

For arbitrary Cauchy real numbersthe situation is a bit more complicated. We say
that asubset S of T" isa Cauchy subset if it is closed downwards, contains nodes from
arbitrarily high levels, and for all p thereis alevel I such that |j/25 — k/2'| < 277
for all nodes (j/2%, (j +2)/2%) and (k/2, (k + 2)/2") beyond in S. Thefirst clause
in that definition says that S is a downset, the second that .S is unbounded. The last
saysthat S converges: given p and [ asin thelast clause, and (5/2°%, (5 + 2)/2%) with
s > 1,then (j + 1)/2% iswithin 277 4 2~ of thelimit of S. So a Cauchy subset is an
unbounded, convergent downset.



Examples of Cauchy subsets S of T"are O, and C,.. More generally, S might also
contain bounded branches or subsets that peter out at a certain point.

It is not hard to see that O,. C S, for the real number r to which S converges.
Hence O,. istheintersection of all the Cauchy subsets convergingto r. Asfor C,., say
that a subset S of T' is unblocked if every nodein S hasachildin S. Both O,. and C..
are unblocked. We can characterize C',. as the biggest unblocked Cauchy subset that
convergesto r.

Theorem 2.7 Any unblocked Cauchy subset of T that converges to r is contained in
C,.. S0 C,. isthe union of all unblocked Cauchy subsets that convergeto r.

Proof: Let .S bean unblocked subset that convergesto r, let I € S. We must show that
r € 1. As S isunblocked, I has descendants — subsets — at every level beyond I's and
these get arbitrarily closeto r. Thusthere are elementsin I that are arbitrarily close to
r. AsT isclosed, thismeansthat r € 1. I

As for the Cauchy real numbers themselves:

Theorem 2.8 Areal number r isa Cauchy real number if and only if O, is contained
in a countable Cauchy subset of 7.

Proof: Suppose r is a Cauchy real number, say the limit of the sequence of rational

numbersc,,. Let J, = (k/2", (k + 2)/2™) where k is the greatest integer such that
k/2™ < ¢,. Then J, isanodeat level n in T, and the sequence .J,, convergesto r. Let
S be the downset generated by the terms in the sequence J,,. Conversely, suppose O,
is contained in a countable Cauchy subset S. Then S convergesto r and if welet ¢, be
the midpoint of the first element of S at level n, then ¢,, convergesto r. I

3 Choiceprinciples

We have looked at three kinds of real numbers. Dedekind real numbers, Cauchy real
numbers, and regular real numbers. It is easy to see that with Countable Choice we can
show that these are the same: we can build a Cauchy sequence from a Dedekind cut
by countably many choices of rationals, and we can build a modulus of convergence
for a Cauchy sequence, by making an appropriate countable sequence of choices of
integers. In fact, since the choices made are either of arational number or an integer,
we need only make countably many choices from a countable set, an axiom variously
called AC-NN, ACy, and AC,,,. In fact, we can get by on even less:

Theorem 3.1 The following choice principles are equivalent:

1. AC,2: Given a sequence S,, of nonempty subsets of {0, 1}, there exists a binary
sequence a,, suchthat a,, € S,,.



2. AC,, for all b: For any positiveinteger b and sequence S, of nonempty subsets of
{0,...,b— 1}, thereexistsa sequence a,, € {0,...,b— 1} suchthat a,, € S,.

3. Given a sequence S,, of nonempty subsets of Z of uniformly bounded lengths
(diameters), there exists a sequence a,, € Z suchthat a,, € S,,.

Proof: To go from 1 to 2, weinduct on b. Certainly 2 holdsforb = 1. 1f b > 1, let  :
{0,...,b} — {0,...,b— 1} betheretraction that takesb to b — 1. Let T}, = ¢ (S,,).
Then we apply induction to get a sequence t,, € T, and apply 1 to get a sequence
an € o1 (tn).

Thelength of asubset S of Z isbounded by b if the difference of any two elements
of S isat most b. To go from 2 to 3, let b be a bound on the lengths of the S,,, and
look at theimages of S,, modulo b+ 1 considered as subsets of {0, ...,b}. Sowegeta
sequencea,, € {0,...,b} sothat each.S,, containsan element congruent to a,, modulo
b+ 1. But that element of S, isunique.

Of course 3implies 1. I

Clearly AC,,, implies the properties above. To refine the matter even more, let
AC, <., be the statement that there is a choice function for the sequence S ,,, where
each S, is a bounded set of natural numbers, while perhaps not uniformly so. Then
AC,,, impliesAC,, ., whichinturnimpliesAC,.. The reason we arelooking at this
is:

Corollary 3.2 AC,,; impliesthat every real number isregular.

Proof: Let r be areal number. We will construct a sequence a,, of rational numbers
such that | — a,| < 1/n. Tothisend, let S,, = {m € Z: |r —m/n| <1/n}. Then
Sp 1S nonempty: since r isreal, thereis arationa ¢ within 1/2n of r, meaning that r
isinthe openinterval (¢ — 1/2n,q+ 1/2n); theclosed interval [¢ — 1/2n,q + 1/2n)|
contains either one or two fractions of the form m/n; and the numerator of any such
fractionwill bein S,,. Also, S,, isof length a most 2: suppose|r — j/n|, |r — k/n| <
1/n, with j < k. From the first inequality, » € [(j — 1)/n, (j + 1)/n], and from
the second r € [(k — 1)/n, (k + 1)/n]. Hence those intervals must overlap, and so
k—1<j+1,0rk—j<2.

Applying (the third version of) AC,,2, we get a sequence m,,; a, = my/nisas
desired. I

Presumably we could get by with something less than AC 2, since it seems un-
likely that AC,,» would follow from every Dedekind real number’s being a Cauchy real
number, every Cauchy real number’'s being a regular real number, or anything similar.
On the other hand, some kind of choice is necessary, as those equivalences are not the-
oremsinIZF (see[9]). So exactly what choice principles are those statements about the
real numbers equivalent to? Well, they themselves could be taken as choice principles.



Moreover, it might well be that among all equivalent formulations, those are the sim-
plest, and so are the best formulations of some weak choice principles. Still, it might
be useful to have different formulations, and the versionsin terms of the pseudotree T’
follow immediately from the work of the previous section.

Corollary 3.3 Every real number is a Cauchy real number if and only if every o-ideal
of T"is contained in a countable Cauchy subset of 7.

Corollary 3.4 Every Cauchy real number is regular if and only if every countable
Cauchy subset of 7" contains an infinite path.

4 Riesz spaces

By a Riesz space we mean alattice-ordered vector space V' over the rational numbers.
Weassumethat V' hasaunit: adistinguished element 1 suchthat if z € V', thenx < nl
for some natural number n. If V' isnontrivial, then ¢ — ¢1 gives an embedding of the
rational numbersinto V. We will identify a rational number ¢ with itsimage g1 in V'
and write z < ¢ to mean that « < ¢’ for some rational number ¢’ < q.

ForzeV,letzt =zv0andz™ = —z V0. It followsthat x = 2+ — 2. Also,
let x| = 2T + 2~ > 0. We say that an element = € V isan infinitesimal if |z| < q1
for every positive rational number ¢, and that V' is archimedean if its only infinitesimal
element is zero. Note that R is an archimedean Riesz space.

Although the field of scalars for a Riesz space is usually taken to be R rather
than Q, the latter choice results in a more general structure for the purpose of con-
structing homomorphismsinto R, our ultimate interest. That's because any Riesz Q-
homomorphism from a Riesz space over R into R is aso an R-homomorphism.

Theorem 4.1 Let V and W be Riesz spaces over R. If W is archimedean, then any
Riesz homomorphismfrom V' to W over Q is a homomorphismover R.

Proof: Let f : V — W be a Riesz homomorphismover Q. Forx € V andr € R
we must show that f(rz) = rf(z). Asz isthe difference of two positive elements
of V, we may assume that z > 0, so f(xz) > 0. Let p and ¢ be arbitrary rational
numberssuchthat p < r < ¢. Thenpz < re < gz 0 pf(z) < f(rz) < qf(z) and
pf(z) <rf(z) < qf(z). Itfollowsthat

(p—a)f(x) < flrz) —rf(z) < (¢ —p)f(2)

Because |¢ — p| can be arbitrarily small, and W is archimedean, this implies that

f(rz) = rf(2). 1

We cannot eliminate the condition that W be archimedean from this theorem be-
cause of thefollowing classical counterexample. Let V' = R x R with thelexicographic
order. Note that we cannot find a constructive proof of the existence of the join of two
edementsinV. Letg : R — R bealinear transformation over Q and define f : V. — V

10



by f(z,y) = (z,g9(x) + y). Itiseasy to seethat f isa Riesz homomorphism over Q,
andthat f isahomomorphismover R if and only if g isalinear transformation over R.

The canonical example of an archimedean Riesz space is a space E of bounded
real-valued functions on a set X that contains the constant function 1. Evaluation at a
point of X isaRiesz homomorphismfrom E into R. The set of homomorphismsfrom
aRiesz space to R has a natural topology and is often called the spectrum of the Riesz
space [4, 6].

Conversely, any archimedean Riesz space V' can be embedded as a subspace of
the space of real-valued continuous functions on its spectrum (the Stone-Yosidarepre-
sentation theorem). The embedding of V' takes a € V' to the function a(o) = o(a).
Thisis why we are interested in homomorphismsof V' into R. The standard proofs of
the Stone-Yosida theorem are not constructive as they rely heavily on both the law of
excluded middle and the axiom of choice.

Following [4], let U(a) = {¢ € Q | a < ¢}. Theset U(a) is an upper cut in the
rational numbers, but need not be located, so might not correspond to a real number.
Still, U(a) has many of the characteristics of areal number (and so is sometimes called
an upper real number, for instance in [4]). For instance, for p rational, we will have
need of the predicates p < U(a), whichmeansp < ¢ forall ¢ € U(a), andp < Uf(a),
which meansthat p < ¢ < U(a) for some rational number q.

If U(a) islocated, then it is the upper cut of a (Dedekind) real number sup(a). If
U(a) is located for every a € V, then sup(| - |) isaseminormon V. Thiswill be a
norm exactly when V' is archimedean.

If I istheinterva (p, ¢), then welet the string of symbols“a € I” denotethe Riesz
space element (a — p) A (¢ — a). We will be working with the predicate Pos(a) =
“0 < Ul(a)", evenif U(a) isnot located. Notethat if V' isafunction space, with 1 the
constant function with value 1, then classically Pos(a € I) exactly when a takes on a
valuein .

We denote the set of functionsfrom A to B by 4 B. If B isapartialy ordered set,
and f; € 4B, thenweset f; < foif A} C Ay and f1(a) < fa(a) fordl a € A;.

Definition 4.2 Let X bea set and y a set of functions from finite subsets of X to T'.
a) We say that y iswell-formed, and that X isthe domain of , if

e X = Use, dom(I), and
e  isclosed downwards.

b) Awell-formed x isextendibleif, for all | € x,uw € X,andn € N, thereisaJ € x
extending | with v € dom(J) and level(J,) > n.

c) Let X be a subset of a Riesz space V. The signed-bit representation of X, with
notation X, is the subset of | J,- YT, asY ranges over all finite subsets of X,
suchthat| = (I )yey € Xr iff Pos(A v y € 1)

It isimmediate that the signed-bit representation X - is well-formed, with domain
X. The essence of the Coquand-Spitters construction is that, if U (a) is located for all

11



a € V, then Vp is aso extendible. The way they use thisis to build Riesz homomor-
phisms of a separable Riesz space V' into R (there called representations), as follows.
They take X to be a countable dense subset of V' and let | be any starting point in
Xr. Using DC, they then extend | to al levels and to include al of X, yielding a
homomorphism of X', which, by density, can be extended uniquely to al of V.

Definition 4.3 An o-ideal through x is an assignment of an o-ideal r, through 7' to
each z in thedomain X of x suchthat, for all | = (I,)),ey € I,ry, | € x.

Theorem 4.4 Thereis a canonical bijection between Riesz homomorphisms of V' into
R and o-idealsthrough V7.

Proof: By results of the section 2, an o-ideal can be considered to be a real number.
So both homomorphismsof V into R and o-ideals through V- are assignments of real
numbers to the members of V. The coherence conditions on a Riesz homomorphism
correspond to the positivity predicate in the definition of the extendible set V1.

Themaintechnical lemmaneededisthat, if f issuchahomomorphism,and f(a) >
0, then Pos(a). So let ¢ be suchthat f(a) > ¢ > 0. Supposer € U(a). Thenr > a,
andr = f(r) > f(a) > ¢ > 0, asdesired.

In some detail, let f : V' — R be a Riesz homomorphism. The induced o-ided
isgivenby x — Oy(,). (Recall that O, isthe o-ideal corresponding to r.) We must
show that thisis through V-, which meansthat if I, € Oy, for each y in afinite set
Y then (I)yey € Vr. And that means Pos(A\, cy v € I,,). By thelemma, it suffices
to show that f(A,cy ¥ € 1,) > 0. Because f is ahomomorphism, the l&ft-hand side
equals /\yEY f(y € I,). Theinfinimum of a finite set of real numbers is positive if
and only if each of thoseredlsis positive. So we need to show that I € O f(,y implies
flyeI)>0.Recalthat I € O, iff r € I'iffinflI < r < supl. Alsorecal that
y € I isan abbreviation for y — inf I A sup I — y. So what we need to show is that
inf I < f(y) < supl implies f(y —inf I Asupl —y) > 0. Againusing that f isa
homomorphism, the latter assertion reducesto f(y) —inf I > 0andsup I — f(y) > 0,
which is exactly the hypothesis.

In the other direction, supposethat 2z — O, isan o-ided through V. Let f(z) =
.. Wemust show that f isaRiesz homomorphism: f(z+y) = f(z)+ f(y), f(rz) =
rf(z), f(1) =1,and f(x Ay) = f(x) A f(y). Wewill provethefirst statement, and
leave the others, al similar, to the reader.

Givene > 0,let1/2" < e¢/4and I, € O,,, I, € O, havelength 1/2". Then the
interval I, + I, has length lessthan ¢/2. Weclamthatany I € O, hasto havea
non-empty intersectionwith I, +1,,. Tothisend, let I € O, . Becausewe'redealing
with intervals with rational endpoints, we can assume that the intersection is empty
and come up with a contradiction. For the intersection to be empty, either inf 7 >
sup(ly)+sup(ly) orsup I < inf(l,)+inf(l,); wewill consider theformer case only.
Because the system O, is an o-ideal through V-, we have that the triple (I, I, I) is
inVr,i.e. Pos(z € I, Ny € I, Ao +y € I). Unpacking that Riesz space element,
we get Pos(z — inf(I,;) Asup(ly) — x Ay — inf(Iy) Asup(ly) —y A (z +y) —
inf I Asupl — (x + y)). That latter Riesz space element is less than or equal to
sup(Ily) — x Asup(ly) — y A (z +y) — inf I, which, by the case hypothesis, is less
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than or equal to sup(l;) — = Asup(ly) — y A (z +y) — (sup(dy) + sup(ly)). This
last element is of theforme A f A (—e — f), which can be shown by elementary Riesz
space considerationsto be < 0, in other words not Pos(e A f A (—e — f)), whichisthe
desired contradiction.

Now pick aninterval 7 in O, of length less than /2. This I, which contains
f(xz +y), overlaps I, + I, which contains f(z) + f(y), S0 f(z + y) iswithin e of
f@) + f(y). !

So by converting areal number to a substructure of the tree-like partial order T, ho-
momorphismsof V' are converted to substructures of products of 7". Similar theorems
hold for other natural substructures of 7T'.

Definition 4.5 An o-ideal through x is countableif each r . is countable.

Theorem 4.6 Thereis a canonical bijection between Riesz homomorphisms of V' into
the regular real numbers and countable o-idealsthrough V.

Definition 4.7 An o-ideal through x is countably extendibleif each r . is a subset of a
countable Cauchy subtree of T.

Theorem 4.8 Thereis a canonical bijection between Riesz homomor phisms of R into
the Cauchy real numbers and countably extendible o-ideals through V.

The proofs here are the same as in theorem 4.4, with the additional observation
that, when transforming Riesz homomorphisms into o-ideals and vice versa, Cauchy
reals are taken to Cauchy reals and regular reals to regular reals.

Similar considerations apply to extending Riesz homomorphisms from dense sub-
sets. That is, suppose X is a dense subset of a Riesz space V. Then it makes no sense
in general to talk about a Riesz homomorphism of X, since X might not even be a
Riesz space. However, X contains the nearness information about V', so that an o-
ideal through X 7 induces a homomorphism of V. In fact, these observations could be
combined with those above, so that X need be taken only as a Riesz generating subset
of a dense set, for instance as the members of a dense set between 0 and 1. Then an
o-ideal through X is canonically extendible to the generated Riesz space, which by
density could be extended to one through the whole Riesz space.

When extending homomorphisms this way, you no longer have a choice of what
kind of real numbersto use. That is, when dealing with only Riesz-space structure
(addition, scalar multiplication, and sup), the corresponding operationson real numbers
never take you outside of any given class of real numbers. the sum of two countable
o-idealsis again countable, as is any multiple or sup of such, and so on. However, the
same no longer applies to limits when dealing with density. A limit or accumulation
point may not have any countable sequence approaching it, so it should be clear that
attaching a Cauchy sequence, even if regular, to dense many pointsin a neighborhood
will not necessarily yield a Cauchy sequence at the given point. Worse yet, even if we
had that every point in V' were the limit of a countable sequence from X, there would
still be problems going from Cauchy sequences on X to ones on al of V: choosing
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a limiting sequence, choosing a Cauchy sequence for each point in the sequence, etc.
(For similar issues in the simpler context of the real numbers alone, see [9].) So the
best we really can say is that any kind of o-ideal on X 1 induces simply an o-ideal on
Vr, i.e. aRiesz homomorphism of V' into the Dedekind real numbers.

These considerations lead to the following

Theorem 4.9 If every extendible y with X of cardinality x has an o-ideal, then every
seminormed Riesz space with a dense subset of cardinality x has a Riesz homomor-
phisminto R.

By cardinality here, we mean simply the Cantorian theory of equinumerosity. So
k issimply aset, and aset X has cardindlity « if it can be put into one-to-one corre-
spondence with k. The latter principle has the flavor of arestricted form of Martin's
Axiom, hence the following definition.

Definition 4.10 Martin’s Axiomfor o-ideals of cardinality «, written MAqq(,.), is the
assertion that every extendible y with X of cardinality x has an o-ideal.

One possible benefit of the reformulation of the existence of such homomorphisms
as MAq(,) is that it can help show that such homomorphisms do not exist. In [4],
Coquand and Spitters show, under DC, that every separable, seminormed V' has a
Riesz homomorphisminto R, essentially by showing MA ¢4,y Of course, they don’t
refer to signed-bit representations, and their definition of countable is broader than
“equinumerous with w”, as is standard in constructive analysis (see [3]). They then
ask whether DC is necessary. One way to approach that problem isto find a model in
which MA g g failsin such away that an equivalent Riesz space can be constructed
fromthisfailure. Infact, this project was carried out. It was later simplified [8] to refer
not to 7" and its paths but more simply to R, which is better understood.

A limitation of the last theorem is that it is not a biconditional. Indeed, we could
not find any equivalence between well-formed sets, possibly with extra conditions, on
the one hand, and any kind of Riesz spaces on the other. In the current formulation,
for instance, having Riesz homomorphisms into R for every Riesz space might not
be enough to get o-ideals through all extendible ys, because x might not correspond
to a Riesz space. Furthermore, there seems to be no elegant formulation of a well-
formed x coming from a Riesz space. One could consider instead all extendible ys,
with domain X, and extend X to a Riesz space V' so that the signed-bit representation
of X isexactly x. The problem thereis guaranteeing that V' is seminormed, with again
apparently no niceway of identifying those xsfor which theinduced V' is seminormed.
One couldtry to be more general, and eliminate the restriction of 1 being seminormed.
There are examples of function spaces that are not seminormed for which the signed-
bit representation is not extendible. You might then think to eliminate the requirement
of extendibility. But then there are problems representing faithfully partial information
about a Riesz space in awell-formed set. In the end, it remains unclear what an exact
correspondence here would be. It would be interesting to see such atheorem.
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