
Parallel Feedback Turing Computability

Robert S. Lubarsky
Dept. of Mathematical Sciences

Florida Atlantic University
Boca Raton, FL 33431

Robert.Lubarsky@alum.mit.edu

July 28, 2015

Abstract

In contrast to most kinds of computability studied in mathematical
logic, feedback computability has a non-degenerate notion of parallelism.
Here we study parallelism for the most basic kind of feedback, namely that
of Turing computability. We investigate several different possible defini-
tions of parallelism in this context, with an eye toward specifying what
is so computable. For the deterministic notions of parallelism identified
we are successful in this analysis; for the non-deterministic notion, not
completely.

keywords: parallel computation, feedback, determinism, non-determinism,
reflection, gap-reflection, admissibility
AMS 2010 MSC: 03D10, 03D60, 03D70, 03E10, 03E75

1 Introduction

Parallelism, as far as the author is aware, has not been studied much in the
kind of computability theory done by mathematical logicians (Turing degrees,
arithmetic sets, admissibility). This is for a good reason: it can be mimicked, via
dovetailing. Using a universal machine, a parallel computation can be simulated
by a sequential computation. This is in stark contrast with complexity theory.
For instance, an NP problem can be understood as a polynomial problem with
parallelism, so the addition of parallelism to polynomial computation results in
a new and quite important notion.

This paper studies parallelism in an extension of Turing computability where
it does make a difference, namely feedback. Feedback was first identified in [5],
p. 406-407, even if not under that name, where some of the results of [1] were
anticipated. Oddly enough, even though that was a very prominent text for
decades, likely the best-known in (using the terminology of the day) recursion
theory, no one ever picked up on those ideas. It was re-discovered independently
for infinite time Turing machines in [2], where even parallelism was discussed,

1

albeit briefly. Something was actually done with parallelism in [1], where it was
shown that its addition to feedback Turing computability is non-trivial, in the
sense that it gets you strictly more than you had before. (It was also shown
there that parallelism added to feedback primitive recursion is essentially trivial
in the same sense.) It was left open there just what is parallel feedback Turing
computable (pfc in what follows).

In this paper, the issues around parallelism are clarified somewhat. For
one, as already discussed in [1], there are several different ways that parallelism
can be included in this framework. It is not yet clear which are fruitful. By
analyzing some of them, we hope to bring this issue along.

In the end, we discuss three. In the next section, we show one to provide
no new computational power, and hence (presumably) to be uninteresting. In
section 3 we turn to the one from [1]; we expand upon its semantics, but despite
that are still unable to characterize just what is so computable, although an
upper bound is provided later. Finally, in the last section we define a semantics
which is in a sense intermediate between these other two, and are successful in
its characterization; we also provide here the upper bound for earlier.

We assume some familiarity with both feedback and parallelism, as presented
in [1] and [2]. To summarize briefly, the oracle in a feedback computation
contains the convergence and divergence facts about computations that call
that very same oracle. If a computation queries an oracle about a computation
for which the oracle does not have an answer, that computation freezes dead in
its tracks. This allows for parallelism, since a computation could then ask the
oracle which programs in a parameterized collection of programs do not freeze.

2 Absolutely Deterministic Parallelism

If a parallel oracle call about 〈e〉(·) is to return an n such that 〈e〉(n) does not
freeze (if any), there is a clear invitation to non-determinism: which n? Indeed,
in [1], a semantics for deterministic parallelism was offered and then quickly
passed over, as it turns out for a good reason: it gets you nothing new. Here we
show this, if for no other reason than to demonstrate that this definition should
no longer be considered.

The idea is that the oracle is supposed to return the “least” n leading to
non-freezing, by some measure. The measure to be used is primarily that of
ordinal height of a computation. That is, n minimizes the height of the tree
of sub-computations. To help keep this paper self-contained, this tree will be
presented, albeit in a way different from in [2] or [1], tailored to the purpose at
hand.

The tree D
(e,n)
α (D for determinism) is defined inductively on α, simulta-

neously for all e, n, as is whether rank(e, n) = α. Assume this is known for
all β < α. Start the run of 〈e〉(n), which is considered as taking place at the

root of D
(e,n)
α . Suppose at some stage of that computation, an oracle call e′

is made. Then a child of the root is established, to the right of any previous
children, for the outcome of this oracle call. Suppose there is an n′ such that

2

rank(e′, n′) < α. Then let n′ be chosen to minimize this rank; if there is more
than one such, then among those pick the least in the natural ordering of ω.

The tree D(e′,n′) = D
(e′,n′)
rank(e′,n′) is placed at the child, and the value 〈e′〉(n′) is

returned to the main computation, which then continues. If there is no such n′,

then the computation pauses, and the construction of D
(e,n)
α is finished.

If no oracle calls pause, then by this stage α the computation 〈e〉(n) is seen

to be non-freezing; D(e,n) can be taken to be D
(e,n)
α and is the tree of sub-

computations; rank(e, n) ≤ α; and the value of 〈e〉(n) is the content on the
output tape if the main computation ever entered into a halting state, else ↑ if
it did not.

It is not hard to show that the rank of a computation is the ordinal height of
its tree of sub-computations. For a freezing computation, i.e. one that remains
paused however big α is taken to be, I do not (yet) have a good notion of a tree
of sub-computations. For the eternally paused node, which trying to run, say, e′

in parallel, it’s paused because for each n′ the trees D
(e′,n′)
β remain paused, say

at e′′n′ . This could be viewed as countable branching from e′, but of course this
branching is different from that in D(e,n): in the latter tree, the branching shows
the sequential computation, and the unsuccessful parallel runs are suppressed;
from e′, the branching represents all the parallel attempts. Of course, from e′′n′ ,
the same story continues.

The problem with this notion is that it doesn’t get us anything new. It is
not hard to show that for a non-freezing computation the construction of the
tree of sub-computations can be done in LωCK1

.

3 Non-deterministic Parallelism

Since choosing one canonical output to a parallel call didn’t work out so well,
let’s go to other extreme and allow all possible answers. So when a computa-
tion makes an oracle call 〈e〉(·), an acceptable answer is any choice of n such
that 〈e〉(n) does not freeze. But wait a minute – since computations are non-
deterministic, it could be that some runs of 〈e〉(n) freeze and others do not,
depending on how the oracle calls made while running 〈e〉(n) turn out. So what
does it mean to say “〈e〉(n) does not freeze?” We take that to be that some
run of that computation does not freeze, if for no other reason than that is
choice made in [1]. Since in the end we are not able to analyze this as we would
like, perhaps it would have been better to say all runs do not freeze. Still, the
question based on some run not freezing remains, and so we keep to that former
notion, leaving the other for future work.

All of this can naturally be summarized in the tree of runs, defined below.
This is not to be confused with the tree of sub-computations, so central in
developing feedback. The tree of sub-computations summarized the sequential
running of an algorithm, which can be viewed as traversing that tree, depth-first,
from left to right. In contrast, the tree of runs captures the non-determinism.
The splitting at a node is the many parallel runs of an oracle call. A single run

3

of the algorithm is a path through the tree. There is no room in this tree for
the sub-computations: if a node in the tree of runs represents 〈e〉(n) = k, the
witness to that last computation is not contained in the tree, but rather must
be found in the tree of runs for 〈e〉(n).

3.1 The Tree of Runs

Definition 3.1 The tree of runs is built from the root (thought of as being
on the top) downwards, or, equivalently, as the computation proceeds, starting
from the beginning, step 0. Each node has a start, meant to be the state of the
computation when that node becomes active, and an end, meant as the state of
the computation when the node becomes inactive. The start of the root is the
program (e, n) being run. What the end of the root, or any other node for that
matter, is, depends. If continuing the computation from the start of the node
leads to an oracle call, say ê, then the end of the node is this ê; as need be,
we may assume that the state of the computation at that point is also recorded
in the node. If no such oracle call exists, then there are two possibilities. One
is that after finitely many steps from the start of the node the computation has
entered into a halting state. Then the end of the node is this halting state,
and the content of the output tape is an output of the main computation. The
other possibility is that the computation from the node’s start never enters into
a halting state, and so it diverges. Then the end of the node is this divergence,
symbolically ↑, which is an output of the main computation.

Nodes that end in a halting state or with divergence have no children. A
node that ends with ê may have children. For any natural number n̂, and any
output k of the computation 〈ê〉(n̂), there is a child with start (ê, n̂, k), and
which continues the computation of its parent with that start as the answer to
the oracle call. Implicitly, and now explicitly, if there are no such n̂ and k, then
that node has no children, and the computation freezes there.

So a run of a computation is exactly a (maximal) path through its tree
of runs. A finite output is given by a finite path, ending in a childless node in
a halting state. A freezing computation is also given by a finite path, ending in
a freezing node. A divergent computation can be given by a finite path, ending
in ↑, and also by an infinite path.

The tree of sub-computations is absent from the tree of runs. It is hidden in
the step from a node with end ê to its children, or to its lack of children, which
can be determined only by building ê’s own tree of runs. Of course, this latter
tree might sub-contract out its own side-trees, and so on.

Because the semantics is given by a least fixed point, ordinal heights can
be associated with these computations (when non-freezing). Ultimately, we will
define the height of an output. But we must be careful here: because of the non-
determinism, there could be wildly different ways to arrive at the same output.
The simple solution to that would be to define the height of an output as the
least ordinal among all the ordinals given by the different ways to get to that

4

output. To do this right, one must define the height of a run of a computation,
or, actually, the height of a hereditary run.

A hereditary run of a non-freezing computation is a run of that compu-
tation, along with an assignment, to each oracle call in the run (i.e. node in
the run with end ê), with answer (ê, n̂, k) (i.e. the child in this run of that
aforementioned node has start (ê, n̂, k)), a hereditary run of (ê, n̂) with output
k.

The height of a hereditary run is defined inductively as the least ordinal
greater than the heights of all of the sub-runs, meaning the hereditary runs
assigned to oracle calls along the way.

The height of a computation 〈e〉(n) = k is the smallest height of any
hereditary run of such a computation. We will want to show that this is absolute
among all transitive models.

Define T
(e,n)
α , the sub-tree of the tree of runs of (e, n) which contains only

those children of rank less than α, inductively on α.
For α = 0, this tree contains only the root; if 〈e〉(n) makes an oracle call

then T
(e,n)
0 does not witness any output, else it witnesses either some finite k

or ↑ as an output.

More generally, if β < α, then T
(e,n)
β ⊆ T

(e,n)
α . Furthermore, if a node in

T
(e,n)
α ends with an oracle call ê, and there are β < α, n̂, and k (incl. ↑) such

that T
(ê,n̂)
β witnesses that k is an output, then the child with start (ê, n̂, k) is in

T
(e,n)
α .

The outputs witnessed by T
(e,n)
α are the outputs of any terminal node (i.e.

k if a node ends in a halting state with output k, or ↑ if a node ends with ↑),
and also ↑ if T

(e,n)
α is ill-founded.

Notice that the height of 〈e〉(n) = k is at most α iff T
(e,n)
α witnesses k as an

output.

Proposition 3.2 The height of 〈e〉(n) = k is absolute among all transitive
models.

Proof: Inductively on α, the trees T
(e,n)
α and the outputs they witness are

absolute. The outputs witnessed by terminal nodes are clearly absolute, indi-
vidual nodes being finite, and for divergence, well-foundedness is absolute for
well-founded models.

3.2 Functions and Ordinal Notations

Ultimately we would like to characterize just what is parallel feedback com-
putable. In the context of multi-valued functions, what this means should be
clarified.

5

Definition 3.3 A function f is parallel feedback computable (pfc) if there
is an index e such that 〈e〉(·) is single valued and 〈e〉(n) = f(n). A set is pfc if
its characteristic function is.

We would like to know what functions are pfc, and what relations are pfc.
While it should be no surprise that functions offer some benefits over rela-

tions, let’s bring out a particular way that happens. Consider the index e which
on any n returns both 0 and 1. (In more detail, let p be the parity function:
{p}(n) is 0 when n is even, 1 when odd. Let 〈e〉(n) make a parallel call to p
and return its output.) Notice that the characteristic function of any set at all
is given by some run of e. So if you’re non-deterministically searching for, say,
the truth set of some Lα, there may well be a pfc function that gives you what
you want, but you can’t distinguish that from this e. And it does you no good
to pick one non-deterministically, because if you pick e, when you go to use it
again later, you might get different answers.

Since we expect that the analysis of this will involve computing initial seg-
ments of L, we might have need of notation for ordinals, which can be defined
a la Kleene’s O. In honor of this history, and since the current subject is par-
allelism, we will call it P. Because of the non-determinism present, there are
several options for how this can be defined (in the limit case).

Definition 3.4 Functional P (fP) is defined inductively:

• 0 ∈ fP and ord(0) = 0.

• If a ∈ fP then 2a ∈ fP and ord(2a) = ord(a) + 1.

• If 〈a〉(·) is a function, and for all n we have 〈a〉(n) ∈ fP, then 3 ·5a ∈ fP
and ord(3 · 5a) = supn{ord〈a〉(n)}.

Definition 3.5 Strict P (sP) is defined inductively:

• 0 ∈ sP and ord(0) = 0.

• If a ∈ sP then 2a ∈ sP and ord(2a) = ord(a) + 1.

• If 〈a〉(·) is a total relation, and for all n and any possible output kn of
〈a〉(n) we have kn ∈ sP, and moreover ord(kn) is independent of the choice
of kn (for a fixed n), then 3 · 5a ∈ sP and ord(3 · 5a) = supn{ord(kn)},
where kn is any output for 〈a〉(n).

Definition 3.6 Loose P (lP) is defined inductively:

• 0 ∈ lP and ord(0) = 0.

• If a ∈ lP then 2a ∈ lP and ord(2a) = ord(a) + 1.

• If 〈a〉(·) is a total relation, and for all n and any possible output kn of
〈a〉(n) we have kn ∈ lP, and supn{ord(kn)} is independent of the choice
of kn’s, then 3 · 5a ∈ lP and ord(3 · 5a) = supn{ord(kn)}, where kn is any
output for 〈a〉(n).

6

Clearly, fP ⊆ sP ⊆ lP.

Proposition 3.7 Every pfc well-ordering is isomorphic to one given by a func-
tional ordinal notation.

Proposition 3.8 If X is pfc then OX is pfc and ωX1 has a functional ordinal
notation.

That OX is pfc was proven in [1]. This is a slight extension of that argument.

Proposition 3.9 If α has a loose ordinal notation then the Σ1 truth set Trα
of LωCKα is pfc (where, as a function of α, ωCKα enumerates the closure of the
set of admissible ordinals).

Proof: Let e ∈ P be a fixed representation of α. By the recursion theorem, we
can do this inductively on the ordinal height of f <P e.

If f = 0, then Trf = ∅.
If f = 2g, then Trf = OTrg from the previous proposition. (It is standard

hyperarithmetic theory that OX is Turing equivalent to the Σ1 truth predicate
of LωCK1

.)
If f = 3 · 5g, then the truth or falsity of any Σ1 assertion φ in the limit

structure can be determined as follows. Let n run through ω, and see whether
φ is true according to each Trg(n) in turn. If you ever find such an n making φ
true, halt, else continue. Using feedback, ask whether that computation halts.
If so, then φ is true in the limit structure; else φ is false there.

Because of that last proposition, I bet the loose notations are ultimately the
best, since they seem to capture the flavor of this kind of computation.

Proposition 3.10 The characteristic function of T
(e,n)
α (along with the start

and end of each node) is computable from a loose ordinal notation for α, as are

the outputs witnessed by T
(e,n)
α .

With a bit of work, this could be presented as a corollary of the previous

proposition, since T
(e,n)
α is definable over LωCKα .

Proof: By a simultaneous induction on ordinal notations.

The only notation for the ordinal 0 is 0. To compute T
(e,n)
0 , one first asks

the oracle whether computing 〈e〉(n) will ever lead to an oracle call. If so, one
runs 〈e〉(n) until that call, which becomes the end of the root, and then stops.
If not, one asks the oracle whether computing 〈e〉(n) will ever halt. If so, one
runs it until it halts; if not, then the output is ↑.

Consider the ordinal notation a = 2b for α = β + 1. Of course, the root

of T
(e,n)
α is computable, as above. For any node in T

(e,n)
α , to see whether a

child is in T
(e,n)
α , we may assume the node ends with ê. A child starting with

(ê, n̂, k) is in T
(e,n)
α iff T

(ê,n̂)
β witnesses that k is an output, which inductively

7

is computable from b. The end of such a node is deterministic in the start.
To compute whether k is witnessed to be an output, one can use the oracle to

see whether the search through T
(e,n)
α for a terminal node with output k will

halt. In addition, when k =↑, check whether T
(e,n)
α is well-founded, which is

computable in its hyperjump (cf. the penultimate proposition).
Now consider the ordinal notation a = 3 ·5b. We must decide membership in

T
(e,n)
α of children of nodes ending in ê. For the child starting with (ê, n̂, k), use

the oracle to see whether the search for an i such that, with βi = ord(b(i)), the

tree T
(ê,n̂)
βi

witnesses that k is an output, halts. The determination of b(i) is, of
course, non-deterministic, as is the value βi, but as βi is guaranteed to be cofinal
in α, this makes no difference. The computation of the outputs witnessed is as
above.

The hope is that the structure just identified will help in determining the
pfc functions and relations, which we have not been able to do. Although the
next section is dedicated to the study of a different kind of computation for its
own sake, it also provides at least a coarse upper bound for those studied here.

4 Context-Dependent Determinism

4.1 Semantics

The problem of the first alternative offered is that it’s too restrictive, and so
gives you nothing new. The problem with the second is that it’s too liberal,
allowing for multi-valuedness, and so we couldn’t analyze it. This time we’re
going for something in the middle. Any oracle call will return at most one value,
but possibly a different value every time it’s called.

The semantics begins just as in the non-deterministic case. Trees C
(e,n)
α (C

for context) are defined inductively on α. The new intuition here is that these
trees are built until an output is seen, and that first output is taken as the

value of 〈e〉(n). More precisely, C
(e,n)
α yields an output if it contains a halting

node (with some integer output k) or a diverging node (with output ↑), or is

ill-founded (with output ↑). Let α be the least ordinal such that C
(e,n)
α yields

an output. If it yields more than one output, pick the left-most one. That
is, starting at the root, traverse the tree downwards. Every non-terminal node
ends with an oracle call ê. The child to be followed has start (ê, n̂, k), where
n̂ is the least natural number such that the tree beneath that node yields an
outcome (and k is the value of 〈ê〉(n̂)).

As an example of this semantics in practice, the earlier proof that OX is
pfc from X [1] still works. The way that construction goes, given a non-well-
founded order, and an n in the non-standard part, if k is in the standard part,
it won’t be chosen as a successor step after n, because that will definitely lead
to a freezing state. Only a non-standard k (less than n in this ordering) will be
chosen, and in fact that least such k in the natural ordering of ω will be.

8

4.2 Lemmas

Lemma 4.1 There is a program which, on input e, diverges if e computes (the
characteristic function of) the truth set of a model of some computable theory
T , and freezes otherwise.

We assume here some standard coding of syntax into arithmetic. The model
can be taken to be a structure on, say, the odd integers, so that the even integers
can be used for the symbols of the language, and formulas with parameters can
be considered. Of course, this program can easily be converted into one that
halts instead of diverges: ask the oracle about this program, and if the answer
comes back “divergent,” then halt. It will be easy to see that in some instances
it can be recognized that e does not compute such a set, and our program
could return that instead of diverging; but if, say, {e}(0) freezes, then any such
program as ours would have to freeze, and there seemed to be no benefit in
a program that sometimes recognizes when e is not as desired and sometimes
freezes.

Proof: It is feedback Turing computable to dovetail the generation of T , the
computations of 〈e〉(n) for all n, and the check that that latter theory is com-
plete, consistent, and contains T . If e computes such a model, this procedure
will never end; if e finds some violation, the procedure can be taken to freeze.
If some 〈e〉(n) freezes, the procedure will necessarily freeze.

We will be using this to see if e codes a model of V = Lα. We do not sharply
distinguish between the Σ1 truth set of some Lα and the full truth set, since
this computational paradigm can easily shuttle between them.

Lemma 4.2 There is a program such that, if e computes a partial order on
a subset of ω, on input e it will return 0 if e’s order is well-founded and 1 if
ill-founded.

Proof: This is a lot like the proof of the computability of O.
For pre-processing, check whether the domain of e is finite. If so, you have

your answer. Else, continue.
First we check for well-foundedness. Go through the natural numbers, and

for each such n, if n has no e-predecessors (determined by an oracle call),
halt, else run this same procedure, via the fixed-point or recursion theorem,
on the same order restricted to those elements e-less than n. In the tree of sub-
computations, the children of a node given by n are exactly the e-predecessors of
n. So this tree is well-founded iff <e is well-founded. So this procedure diverges
iff <e is well-founded, else it freezes.

To check for ill-foundedness, run in parallel the following procedure on each
n ∈ ω. If n has no predecessor, freeze. Else, by the fixed point theorem, run
this same procedure on the same order restricted to those elements e-less than
n. In the tree of runs, the children of a node given by n are exactly the e-
predecessors of n. So this tree is well-founded iff <e is well-founded. Since the

9

terminal nodes all freeze, the only possible non-freezing semantics is an infinite
descending path, which exists exactly when <e is ill-founded.

Now run both of those checks in parallel. Whichever one does not freeze is
what tells you whether <e is well- or ill-founded.

Just as before, it is easy to see that what can be computed is exactly some
initial segment of L. We will shortly see just what this initial segment is. Before
that, we will prove some lemmas which handle some simpler cases, partly to get
the reader (and author!) used to the kind of arguments employed, and partly so
in the main theorem we can ignore some of the cases of weaker, messier ordinals,
and focus on just the more strongly closed ones.

Lemma 4.3 The supremum α of the computable ordinals is admissible.

Proof: Suppose not. Let f : ω → α witness α’s inadmissibility. For each
n, using the previous lemmas, one can check whether 〈e〉 codes a model of
“V = Lγ is the least admissible set in which f(n) is defined,” and if so whether
the model so coded is well-founded. On many inputs this will freeze, but since
by hypothesis α is the least non-computable ordinal, there is at least one en on
which this halts (possibly more, allowing for some flexibility in the coding). By
making a parallel call of all natural numbers, one can produce such an en.

To see whether a Σ1 formulas φ is in the Σ1 truth set for Lα, consider the
procedure which runs through each n, finds a truth set for f(n) as above, and
stops whenever φ shows up as true in one of those sets. Now ask the oracle
whether that procedure halts. If so φ is true in Lα, else not.

Lemma 4.4 α is greater than the least recursively inaccessible.

Proof:
The following procedure will generate the Σ1 truth set of the first recursively

inaccessible.
Start with (a code for) the truth set of LωCK1

. We will describe a procedure
which pieces larger and larger initial segments of L together, which diverges
(continues indefinitely) as long as it’s still working on the first inaccessible, and
which freezes whenever it finds a contradiction in what it has done so far.

At any stage along the way, there will be a well-founded model of V = Lγ ,
as well as a finite set of Π1 sentences the procedure is committed to making
true. As soon as the model at hand falsifies one of those sentences, then the
procedure freezes, because it sees that the jig is up.

Dovetail consideration of all countably many Σ1 formulas φ(x, y, ~z) and all

countably many sets A and tuples ~b that show up in the models produced in
this construction. At stage n we are considering a certain φ,A, and ~b, and
will decide whether we think ∀a ∈ A ∃y φ(a, y,~b) is true or false in the first

10

recursively inaccessible. In parallel, choose either true or false. Moreover, if you
choose true, then you must provide a well-founded model of V = Lγ extending
the previously chosen model by at least one admissible, in which the chosen
formula with parameters is true, and which also models there is no recursively
inaccessible. If you choose false, then you must also choose a specific a ∈ A,
and include in the set of sentences “∀y ¬φ(a, y,~b)”.

Since this construction has no halting condition, the only way it can not
freeze is if it diverges. It cannot diverge by always making the chosen formula
false, if for no other reason than there are infinitely many total Σ1 functions in
the starting model, and they cannot consistently be made partial. So infinitely
often the model under consideration will be extended by at least one admissible.
Hence the limit model will be an initial segment of L which is a limit of admis-
sibles. Let φ be Σ1 and A,~b be in the limit model. Suppose it’s true in this
model that ∀a ∈ A ∃y φ(a, y,~b). When that formula came under consideration,
it could not have been deemed false, because then we would have committed
ourselves to a specific counter-example, and that counter-example would have
been seen to be invalid at some point, leading to a freezing computation. So
the formula was deemed to be true. Hence a model was picked in which the
induced relation was total, thereby providing a bound on the range. Hence the
limit model is admissible. Since it’s a limit of models of “there is no recursively
inaccessible,” it is itself the least recursively inaccessible.

We have just argued that any divergent run of this program produces the
least recursively inaccessible. Furthermore, there are divergent runs, by always
choosing whatever is in fact true of that ordinal.

4.3 Main Theorems

Definition 4.5 Let Γ be a collection of formulas, X a class of ordinals, and
ν+X the least member of X greater than ν. We say that α is Γ-reflecting on
X if, for all φ ∈ Γ, if Lα+X |= φ(α), then for some β < α, Lβ+X |= φ(β).

We are interested in the case Γ = Π1 and X = the collection of admissible
ordinals. For this choice of X, we abbreviate ν+X by ν+, which is standard
notation for the next admissible anyway. This is called Π1 gap-reflection on
admissibles. Let γ be the least such ordinal.

It may seem like a strange notion. I will not dispute that. But this is not the
first time it has come up. Extending work in [4], it was shown in [3] that such
ordinals are exactly the Σ1

1 reflecting ordinals. The reason this topic came up
in the latter paper is that a particular case of its main theorem is that γ is the
closure point of Σ2-definable sets of integers in the µ-calculus. (The µ-calculus
is first-order logic augmented with least and greatest fixed-point operators. In
this context, Σ2 refers to the complexity of the fixed points in the formula,
namely, in normal form, a least fixed point in front, followed by a greatest fixed
point, followed by a fixed-point-free matrix.) So this definition has been used

11

(at least) twice before already. With a third use here, one might well think it
has other applications too.

Theorem 4.6 The ordinals so computable are exactly those less than γ.

So there is an intimate connection between parallel feedback computability
and Σ2 definability in the µ-calculus. This was not expected. In the simpler
case of feedback Turing computability [1], it was really no surprise that it turned
out to be the same as hyperarithmeticity, as both are essentially joining well-
foundedness to computation. But we have no intuition, even after-the-fact, in
support of the current result.

Proof: We will argue that no computation 〈e〉(n) can be witnessed to converge

or diverge from stage γ onwards. Notice that for any γ′ > γ, if T
(e,n)
γ′ is different

from T
(e,n)
γ , that can only be because some other computation 〈e′〉(n′) was seen

to converge or diverge at some stage at least γ and less than γ′. Tracing back
the computation of 〈e′〉(n′), we are eventually led to a computation that was
seen to converge or diverge at exactly stage γ. Since γ is a limit ordinal, there
are no new terminal nodes on any tree of runs at stage γ. Hence there is some

computation 〈e〉(n) such that T
(e,n)
γ is ill-founded, but T

(e,n)
β is well-founded

for any β < γ. How could the ill-foundedness of T
(e,n)
γ be most economically

expressed? Since γ is the γth admissible ordinal, T
(e,n)
γ is definable over Lγ .

It is a basic result of admissibility theory that a tree in an admissible set is
well-founded iff there is a rank function from the tree to the ordinals in that
very same admissible set. So the ill-foundedness of such a tree is witnessed by
the non-existence of such a function in any admissible set containing the tree.
In the case at hand, that is a Π1 statement in Lγ+ with parameter γ. By the

choice of γ, this reflects down to some smaller β. So T
(e,n)
β , for some smaller β,

was already seen to be ill-founded. So there can be no new computation values
at stage γ, and hence not beyond either.

For the converse, let β be strictly less than γ; by lemma 4.3, we can assume
that β is a limit of admissibles. Assume inductively that for each α < β there
is an e such that 〈e〉(·) is the characteristic function of the Σ1 truth set of
Lα. Let φ witness that β is not Π1 gap-reflecting on admissibles: so φ is Π1,
and Lβ+ |= φ(β), but if α < β then Lα+ 6|= φ(α). We must show that (the
characteristic function of) the Σ1 truth set of Lβ is computable.

As in lemma 4.4, start with (a code for the Σ1 truth set of) LωCK1
. At any

stage along the way, there will be a well-founded model of V = Lα, as well as
two finite sets (both empty, at the beginning) of sentences. The intent of this
construction is that, if it continues for ω-many steps, the union of the Lα’s so
chosen will be Lβ , all of the sentences in the first set will be true in Lβ , and the
second set will provide a term model of V = Lβ+ .

The action at any stage is much as in the previous lemma. First, check
for the consistency of a theory, to be described below. If an inconsistency is
found, freeze. Else we are going to continue building the ultimate model. This
involves interleaving steps to make sure that the union of the chosen Lα’s, Lδ,

12

is admissible (and δ ≤ β), with steps to insure that Lδ+ |= φ(δ) (guaranteeing
δ ≥ β). We assume a dovetailing, fixed at the beginning, of all (countably many)
formulas ψ with parameters. For the formulas in the first set, the parameters
are the sets in the Lα’s chosen along the way. For the formulas in the second set,
the parameters include, in addition to the members of the Lα’s, also constants
ci for the term model, as well as a dedicated constant we will ambiguously call
δ, since the ordinal δ is its intended interpretation.

At any even stage 2n, consider the nth formula of the form ∀a ∈ A ∃y ψ(a, y,~b),
where ψ is Σ1 and the parameters are from the Lα at hand. In parallel, choose
it to be either true or false. Moreover, you must provide a well-founded model
of V = Lα, extending the previously chosen model by at least one admissible.
Furthermore, if you had deemed the formula to be true, then it must hold in
the chosen Lα; if false, then you must also choose a specific a ∈ A, and include
in the first set of sentences “∀y ¬ψ(a, y,~b)”. Notice that this step includes as
a degenerate case those instances in which ψ does not depend on a, thereby
forcing us to decide all Σ1 and Π1 formulas. Finally, it must be the case that
α < β, which can be verified computably, since it needs only a well founded
model of V = Lα+ (which exists by the inductive hypothesis and the choice of
β) which also satisfies “¬φ(α) ∧ ∀ν < α Lν+ 6|= φ(ν)”.

At an odd stage 2n+ 1, consider similar to the above the nth formula of the
form ∀a ∈ A ∃y ψ(a, y,~b), where ψ is Σ1, only this time the parameters are for
the second set (that means the parameters are from an already chosen Lα and

the ci’s and δ). Include in the second set either “∀a ∈ A ∃y ∈ τ ψ(a, y,~b)”,

for some term τ , or “τ ∈ A ∧ ∀y ¬ψ(τ, y,~b), ” for some term τ . Of course, this
step is meant to include all possible degenerate cases, such as Σ1 assertions,
even quantifier-free sentences. Also, if “τ < δ” for some term τ is ever included
in the second set, then, extending Lα if need be, for some ε < α the sentence
“τ = ε” is included in the second set.

With regard to the theory referenced above but there left unspecified, at any
stage along the way it will be “V = Lδ+ is admissible, and δ is admissible, and
α < δ (where Lα is the model we have at this stage), and everything in the first
set is true in Lδ, and everything in the second set is true in V .”

For this computation, the tree of runs has neither halting nor divergence
nodes (since, whenever it does not freeze, it makes another oracle call). It is
ill-founded, since there is a run of the computation which does not halt, namely
one using the truth about Lβ and Lβ+ to make decisions along the way. We
would like to show that along any infinite path in the tree of runs, the induced
δ equals β.

Consider the term model induced by the second set. There is an isomorphism
between the term δ and the union of the α’s chosen along the way: on the one
hand, the assertion “α < δ” was included in the theory along the way, and on
the other, anything ever deemed less than δ was forced to be less than some
α. So we can consider the term model as including some (standard) ordinal δ.
Also, this δ is at most β, since each α is less than β. The next observation is
that this term model satisfies “V = Lδ+ is admissible,” by the Henkinization

13

(choice of explicit witnesses) performed on the second set. Of course, the term
model might well be ill-founded. But its well-founded part has ordinal height
the real δ+. By the downward persistence of Π1 sentences, since φ(δ) holds in
the term model, it holds in the actual Lδ+ . By the choice of φ, δ is at least as
big as β.

We must turn this procedure into a way of getting the characteristic function
for the truth set of Lβ . For any Σ1 sentence χ, run the procedure as above,
with χ and ¬χ each separately, in parallel, included in the first set. The false
option is inconsistent and so any such computation will freeze, so the answer
you will get is the true option, along with the information that the procedure
diverges.

Corollary 4.7 For β < γ, the order-types of the Σ1(Lβ)-definable well-orderings
of ω are the ordinals less than β+.

This is a generalization of the earlier result that the order-types of the Π1
1

well-orderings are cofinal in ωCK2 . Sacks [6], giving this special case as an
exercise (p. 51, 7.10), attributes it to Richard Platek, who never published a
proof. Although Platek may have been the first to notice this (Sacks in personal
correspondence dates it from the ’60s), Tanaka [7] seems to have discovered it
independently.

The corollary as stated is not the optimal result, since the conclusion holds
for any β which is Σ1 projectible, by arguments similar to Tanaka’s. It’s just
that this more general result is no longer a corollary to the theorem.

Proof: For simplicity, assume that β is a limit of admissibles. The construction
of the theorem is of an ill-founded tree Tβ , Σ1 definable over Lβ , such that any
infinite path yields a term model of V = L with ordinal standard part β+. If
the well-founded nodes all had rank less than some β′ < β+, then they could
all be distinguished from the non-well-founded nodes definably over Lβ′ . So an
infinite path, and hence such a term model, is also definable over Lβ′ . It is
then easy (which we can here take to mean “definable over Lβ′”) to read off all
the reals in this model. This includes reals with L-rank cofinal in β+. This is
a contradiction. Hence, for any β′ < β, there is a node in Tβ with that rank.
The nodes of Tβ are labeled with pairs (e, n). They also have associated with
them two finite sets of formulas. The formulas are just finite pieces of syntax,
except for the parameters from Lβ ’s. But Lβ is the Σ1 Skolem hull of ω, which
provides an integer name for each of its members (for instance, a Σ1 formula
that it uniquely satisfies). So each formula can be coded by a natural number.
All told, each node can be represented by a natural number. This produces an
ordering of a subset of ω with rank β′. To get this to be a well-ordering, it
suffices to take the Kleene-Brouwer ordering of that tree.

Happily, the work done also enables us to determine at least an upper bound
for the non-deterministic computations.

14

Theorem 4.8 Any relation computable via a non-deterministic parallel feed-
back Turing machine, as in the previous section, is Σ1(Lγ).

Proof: By much the same argument as before. The only possible values come
from halting nodes, divergent nodes, and the ill-foundedness of trees. A node
is seen to halt at a successor stage, and γ is not a successor ordinal. A node
is seen to diverge at a stage of the form α + ω, and γ is not of that form. As

for the last possibility, the tree T
(e,n)
γ is ∆1 definable in Lγ+ with parameter γ.

If it’s not well-founded, that fact is Π1 expressible in Lγ+ . By the choice of γ,

a smaller T
(e,n)
α was already ill-founded, so divergence was already a value for

〈e〉(n). Hence there are no new possible values for any computation at or after
stage γ.

References

[1] Nathanael Ackerman, Cameron Freer, and Robert Lubarsky, “Feed-
back Turing Computability, and Turing Computability as Feed-
back,” Proceedings of LICS 2015, Kyoto, Japan; also available at
http://math.fau.edu/lubarsky/pubs.html

[2] Robert Lubarsky, “ITTMs with Feedback,” in Ways of Proof The-
ory (Ralf Schindler, ed.), Ontos, 2010, pp. 341-354; also available at
http://math.fau.edu/lubarsky/pubs.html

[3] Robert Lubarsky, “µ-definable Set of Integers,” Journal of Symbolic
Logic, v. 58 (1), March 1993, pp. 291 - 313

[4] Wayne Richter and Peter Aczel, “Inductive Definitions and Reflecting Prop-
erties of Admissible Ordinals,” in Generalized Recursion Theory (Fen-
stad and Hinman, eds.), North-Holland, 1974, pp. 301-381

[5] Hartley Rogers, Theory of Recursive Functions and Effective Com-
putability, McGraw-Hill, 1967

[6] Gerald Sacks, Higher Recursion Theory, Springer, 1990

[7] Hisao Tanaka, “On Analytic Well-Orderings,” Journal of Symbolic
Logic, v. 35 (2), June 1970, pp. 198 - 204

15

