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Abstract

Varieties of the Fan Theorem have recently been developed in reverse
constructive mathematics, corresponding to different continuity princi-
ples. They form a natural implicational hierarchy. Earlier work showed
all of these implications to be strict. Here we re-prove one of the strictness
results, using very different arguments. The technique used is a mixture
of realizability, forcing in the guise of Heyting-valued models, and Kripke
models.
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1 Introduction

The Fan Theorem states that, in 2<ω, every bar is uniform.1 It has been
important in the foundation of constructive mathematics ever since it was first
articulated (by Brouwer), and so it is no surprise that with the development of
reverse mathematics in recent years it has become an important principle there.
In particular, various weakenings of it have been shown to be equivalent to some
principles involving continuity and compactness [2, 4, 10]. These weakenings
all involve strengthening the hypothesis, by restricting which bars they apply
to. The strictest version, FAN∆ or Decidable Fan, is to say that the bar B
in question is decidable: every node is either in B or not. Another natural
version, FANΠ0

1
or Π0

1 Fan, is to consider Π0
1 bars: there is a decidable set

C ⊆ 2<ω × N such that σ ∈ B iff, for all n ∈ N, (σ, n) ∈ C. Nestled in between
these two is FANc or c-Fan, which is based on the notion of a c-bar, which is

1A bar is a set of nodes which contains a member of every (infinite) path, and it is uniform
if it contains a member of every (infinite) path by some fixed level of 2<ω .
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a particular kind of Π0
1 bar: for some decidable set C ⊆ 2<ω, σ ∈ B iff every

extension of σ is in C. It is easy to see that the implications

FANfull =⇒ FANΠ0
1

=⇒ FANc =⇒ FAN∆.

all hold over a weak base theory. What about the reverse implications? (We
always include the implication of FAN∆ from IZF when discussing the con-
verses of the conditionals above, IZF being our choice of base theory for non-
implications.)

There had been several proofs that some of the converses did not hold [1,3,6].
These were piecemeal, in that each applied to only one converse, or even just a
weak form of the converse, and used totally different techniques, so that there
was no uniform view of the matter. This situation changed with [14], which
provided a family of Kripke models showing the non-reversal of all the implica-
tions. It was asked there whether those models were in some sense the right, or
canonical, models for this purpose; implicit was the question whether the other
common modeling techniques, realizability and Heyting-valued models, could
provide the same separations.

Here we do not answer those questions. We merely bring the discussion
along, by providing a different kind of model. It should be pointed out early
on that the only separation provided here is that FAN∆ does not imply FANc,
although we see no reason these arguments could not be extended to the other
versions of FAN.

There are several ways that the model here differs from those of [14]. In the
earlier paper, a tree with no simple paths was built over a model of classical
ZFC via forcing, and the non-implications were shown by hiding that tree better
or worse in various models of IZF. In particular, we showed there that FAN∆

does not imply FANc by including that tree as the complement of a c-bar in a
gentle enough way that no new decidable bars were introduced. Here, we start
with a model of ¬FAN∆, and extend it by including paths that miss decidable
(former) bars. If this is done to all decidable bars, FAN∆ can be made to
hold. If this is done gently enough, counter-examples to FANc will remain as
counter-examples.

The other difference is in the techniques used. It is like a Kripke model built
using Heyting-valued extensions of a realizability model. This is not the first
time that some of these techniques have been combined (see [17] for references
and discussion). This is the first time we are aware of that all three have been
combined. Perhaps that in and of itself makes this work to be of some interest.

An earlier version of this work was presented at LFCS ’18 [13]. The previous
paper seems to be correct, except for the last paragraph. The reason I did not
check it carefully enough at the time was that it seemed so obviously true. The
argument was that FANc fails because there is a c-set which is avoided only
by (the characteristic function of) the halting problem. Under recursive realiz-
ability (Kleene’s K1) the solution to the halting problem is not realized to be a
function, so that c-set is a c-bar in that model. It seemed clear at the time that
the same would hold in a generic extension of the recursive realizability model,
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that no generic would introduce the halting problem’s solution. This turned out
to be wrong though. The arbitrary covers used earlier (still defined in the next
section, and used there only) allow for the importation of extra information
through the realizer that something is in a chosen cover. Hence one is forced to
use some kind of canonical cover, disallowing the presence of extra information.
Over K1, FANc fails because truth is controlled by computability; in order for
FANc to continue to fail over generic extensions of K1, it is inadequate to use
arbitrary covers – rather, computability must again be leveraged, and so has to
play a role in the semantics.

That change led to several others in its wake. Then as now, nodes in the
Kripke model are based upon values from Heyting algebras. Earlier, the bottom
value ⊥ of the Heyting algebras was disallowed to be used. That means that
for something to be a node, its components must be different from ⊥. That
check is not computable, not even computably enumerable, but merely co-c.e:
at some point in evaluating the semantics, one would have to go out beyond a
given level n of a tree to a later level by which all nodes from level n with only
finitely many descendants are seen as such, and there is no computable way
to do this (uniformly in n). This messes the semantics up. It turns out to be
easier to allow inconsistent nodes (that is, nodes that have ⊥ as a component).
By so doing, a consistency check as sketched above can be avoided. This is
especially interesting, because in a classical meta-theory including inconsistent
nodes or not is irrelevant: an easy induction shows that an inconsistent node
forces everything, and, using that, a separate induction shows that the consistent
nodes force the same things whether or not nodes forcing everything are present.
So we apparently have here a live example of a difference in semantics depending
upon the logic of the meta-theory.

A parallel adjustment over the earlier version happened on the level of the
Heyting algebras. To summarize the changes detailed above, the Kripke seman-
tics was changed by including computability in order to retain the c-bar, and this
led to the inclusion of inconsistent nodes. Similarly, in the Heyting semantics,
if we include more representatives for ⊥ then that in turn allows us to include
computability, in the form of dropping the double negation in the definition of a
cover, while still retaining that these models eliminate decidable bar. The root
of this adjustment is the same for both they Heyting and the Kripke semantics:
given a computable tree, there is in general no computable way to tell whether
the tree is finite or infinite beyond a given node, a consistency check. The dou-
ble negation was introduced as a way around this consistency check. If a tree
beyond a node is indeed finite, you don’t need to compute a witness of such, as
anything would realize that there was not not such a level. If one though allows
nodes that represent ⊥ then one can use them in the semantics, and avoid the
need for computation, even without the double negation. How does this play
out in particular? In the proof that the generic is a path through the tree, we
have to show that for every level k the generic contains a unique node from that
level. If we had to use only non-⊥ values, we would be obligated to be able
to distinguish between those nodes and the ones representing ⊥. If we allow
⊥-nodes, then it is easy to show that every node on level k forces the generic to
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contain a unique node from level k, namely itself.
Although I was led to inconsistent nodes and representatives for ⊥ by efforts

to correct oversights and make sure the proof is correct, they slowly took on
a life of their own, bringing along other benefits. The first I noticed was that
they simplified the technicalities, since one needs separate, additional clauses to
exclude them, and that complexity unsurprisingly propagates. After the fact,
they brought along also aesthetic and philosophical benefits. Constructivism got
its start through Brouwer’s philosophy, which founded mathematics upon our
intuitions of time and space, elements that Brouwer got from Kant. A central
concept for Kant was the thing-in-itself, das Ding an sich, which is the source of
our sensory perceptions, yet cannot be accessed directly. This unknowable other
seems to be ever-present, while always remaining unapproachable. In a sense,
inconsistent nodes are a reflection of this idea. They have no structure that
we can discern: they all force all formulas to be true, hence they are internally
indistinguishable from each other. They are unavoidable: every node can be
extended to become inconsistent. They seem in this model to be a sort of black
hole: once you get in, there is no getting out, and all of the normal rules of
logic no longer apply. More broadly, they can be taken as a pale reflection
within the limited reach of one Kripke model of all of the realms of being we
might never experience. It’s like going through a black hole and out the other
side, like going backwards in time to before the Big Bang, like flipping into
the mirror realm of dark matter and energy, like stepping outside of your own
consciousness and its limiting isolation. Of course, don’t try to grab onto this
feeling too tightly. Using classical logic, it makes no difference if these nodes are
there or not, so if you impose that stricter regimen on them, they will evaporate
like ghosts. We study everything else, all the consistent nodes in the Heyting
and Kripke models, for it is there we find structure and meaning; then at the
end, at inconsistent nodes, it all collapses into one.

This work was started while the author was a fellow at the Isaac Newton
Institute’s fall 2015 program in the Higher Infinite. The author warmly thanks
the Institute for its support and hospitality during that time. Thanks are due
also to Andrew Swan, a conversation with whom led to this work. Thanks
go in addition to Francois Dorais and Noah Schweber for their input on Math
Overflow about Francois’s example of a c-bar which is not decidable.

2 Kripke structures of constructive models

While the general theory of models of constructive systems is often itself pre-
sented constructively (for example in [7,9,18]), particular models are often built
within a classical meta-theory, because essential use is made of classical con-
structions (as in [5] or [14], for instance). For Kripke models, that means,
working classically, giving a partial order, and associating to each node a classi-
cal model (for the similarity type in question), along with a family of transition
functions; this then determines a model of constructive logic. Our current set-
ting is different.
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A warning shot is given by the fact that the root of this model is the re-
cursive realizability model, that is, the one based on Kleene’s PCA K1, which
we therefore call MK1

.2 To the degree we work within this model, we must
work constructively, and not classically. This point could be finessed, though,
by insisting that MK1

was itself built within a classical theory.
More crucially, the structures at the nodes will be determined by Heyting-

valued extensions of MK1 . The intuition behind the construction is that the
structure at a node is simply a Heyting-valued model; if the node τ extends σ,
then the structure at τ is supposed to be a Heyting-valued extension of that
at σ. There is an issue though with formalizing matters just that way: such
structures are no longer of the right type. A structure of the language of set
theory would, among other things, determine, for objects a and b, whether a ∈ b.
A Heyting-valued model, though, determines whetherH 
H “a ∈ b”, whereH is
a value in the Heyting algebra T in question, and 
H is the standard semantics
for Heyting-valued models.

Notation: Often a Heyting-valued model is understood as providing a value
JφK in a fixed Heyting algebra for a sentence φ. The notation H 
H φ is just
another way to say H ≤ JφK, in words that H is stronger than or extends JφK,
and comes from classical forcing. The standard exposition of classical forcing
involves a partial order, and p 
 φ, where p is in the partial order, is defined
inductively on φ. A less-common albeit equivalent alternative is Boolean-valued
models, in which a Boolean value JφK is defined, the Boolean algebra being a
Boolean completion of the partial order. The relationship here is again p 
 φ iff
p ≤ JφK. Heyting-valued models are really nothing other than classical forcing,
with Excluded Middle taken away from the model so built.

It would be interesting to extend the notion of Kripke models to allow not
just classical structures at each node but also structures for constructive theo-
ries, such as Heyting-valued models; presumably, we believe, this can be done,
and we leave this for future work. For the sake of efficiency at the moment,
we address these matters by allowing the Heyting algebra to be spread within
the partial order, thereby mixing the Heyting and Kripke ideas together. That
is, a structure at a node will contain, in addition to a Heyting-valued model,
also a Heyting value H from the Heyting algebra. A node can be extended
by strengthening or extending the Heyting value. Truth at a node will be de-
termined in part with reference to coverings coming from the Heyting algebra;
that is, the covering or join operation from the Heyting algebra will induce a
covering relation among the nodes, which will be used in the semantics. So the
partial order will be doing double duty, containing both the Heyting algebra
structures and their associated notions of covering, and the Kripke model part.
This should not be confused with say Beth models, which have a single notion
of covering applying to the entire order. Here we have different (albeit parallel)
coverings, independent of the iteration which is purely a Kripke structure.

Before giving the formal definitions, we specify the idea a bit more. We

2Kleene defined realizability only for arithmetic, the extension to full set theory coming
only later [15] (see also [16]); a description of both K1 and of realizability models in general
can be found in many introductions to realizability, such as [1] and [17].
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will need to iterate taking Heyting-valued extensions. By way of notation, T
will be taken to be a typical complete Heyting algebra, to be consistent with
the notation below. Some of these Heyting algebras T will show up only in
some previously constructed Heyting-valued extension. So we assume we have
a definable collection of Heyting algebras, say with definition φ(T ), which IZF
proves to be a set.3 Each node p will be a string 〈(T0,O0), (T1,O1), ..., (Tn,On)〉
such that each Heyting valueOi forces that the next Ti+1 is an allowable Heyting
algebra, as given by φ. A child of p is determined by, optionally, extending some
of the Oi’s, and, optionally, including another pair (Tn+1,On+1) onto the string.

More formally, let φ(x) be a formula such that IZF proves “if φ(x) then x
is a complete Heyting algebra, and φ is satisfied by only set-many objects.” We
will have occasion to consider φ as evaluated in a Heyting-valued extension, and
so as applied to a term. Even if there are only set-many objects satisfying φ in
this extension, there could still be class-many such terms. In order to keep this
construction fully set-sized, we will allow only set-many terms T to be applied to
φ. In more detail, suppose we assert in some context that φ(T ). If this context
is some ground model M of IZF, then there are only set-many such T ’s within
this model. Else the context will be some Heyting-valued extension, given by a
Heyting value H – H 
H φ(T ) – within some other context, a ground modelM
of IZF. Then M will satisfy that there are only set-many terms forced by any
H satisfying φ.

Remark 1. In the end, our ultimate model starts from MK1
, itself built within

a classical meta-universe V . The construction to follow will be carried out in
later sections within MK1 . At the same time, the construction of this section
can be done within any model M of IZF in place of MK1

. So we will give the
definition in terms of an unspecified M. The reader may of course choose to
think of M as MK1

, the only case we will actually use.

Definition 1. Definition of the nodes, and their associated models, by induction
on ω:

The unique node of length 0 is the empty sequence 〈〉, with associated model
M〈〉 =M.

Inductively, given the set of nodes of length n, a node p of length n+ 1 will
be a string of the form 〈(T0,O0), (T1,O1), ..., (Tn,On)〉 such that p � n is a node,
and, in M, O0 
H “O1 
H ...“On−1 
H “φ(Tn) and On is a Heyting value
in the Heyting algebra Tn””...”. The model Mp associated to p is the forcing
extension by Tn, with truth determined by On, as evaluated within the model for
p � n.

If p � n 
 On = ⊥ then p and all of its descendants are inconsistent.

We abbreviate the iterated forcing O0 
H “O1 
H ...“On−1 
H ψ”...” as
〈O0, ...,On−1〉 
H ψ. The reason for the subscript H is to emphasize that this

3We do not need to assume that φ defines an inhabited set. In the degenerate case of φ
picking out nothing, then the definitions given collapse to a one-node Kripke model, with no
iteration. In the indeterminate case when we don’t know whether φ yields the empty set, then
we just don’t know whether the Kripke model has one node or more.
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notion of truth is given by iterated forcing. In contrast, for example, truth
in MK1 is given by realizers, and will be written as e 
r ψ. One important
instance of the latter will be iterated forcing over MK1

. So truth in the model
given by forcing with T over M =MK1

would be written as e 
r “O 
H ψ”.
Another example will be the upcoming Kripke model. The partial order for
the Kripke model will be built on the same set of nodes just defined. The
difference to the Heyting-valued models above is that the associated Heyting-
valued models Mq for all q ≥ p will be combined to form a Kripke model Mp

(note the subtle change in name: superscript instead of subscript) at p. Truth
in the Kripke model will look like p 
K φ. When this is evaluated withinMK1

,
it can look like e 
r “p 
K φ”. As long as we remain agnostic about the nature
of M, we will use the modeling notation |=M. So iterated forcing will look like
M |=M “O 
H ψ”, and truth in the Kripke model will be M |=M “p 
K φ”

By our various conventions, there are only set-many nodes.
By way of notation, we will consider p as being 〈(T p0 ,O

p
0), (T p1 ,O

p
1), ..., (T pn ,Opn)〉.

Typically mention of the T pi ’s will be suppressed, as they are implicit in the
choice of the Opi ’s, so that p of length n will be 〈Op0 , ...,O

p
n−1〉.

Definition 2. The (Kripke) partial order on the set of nodes: For q to be an
extension of p, written q ≥ p, q has to be at least as long as p, and, for i less
than the length of p, q � i 
H Oqi ≤ O

p
i . (For this to make sense, implicitly

q � i 
H T qi = T pi .)

We leave it to the reader to show that this is indeed a partial order. Notice
that an extension of a node is indicated with the standard notation for par-
tial orders, ≥, in contrast with the strengthening of a Heyting value, which is
indicated with the standard notation for forcing, ≤.

This p.o. is inM. Since a model embeds into any Heyting-valued extension,
the p.o. is also in any of the models associated with a node. Furthermore,
consider the p.o. restricted to a node (i.e. the extensions of any node, including
itself). This restriction is definable in the node’s model, uniformly from the
node. That is, given any node as a parameter, the node’s model can figure out
the rest of the p.o.

We are finally in a position to define the model. This will be done within
M inductively on the ordinals α. (An ordinal is taken to be a transitive set of
transitive sets.) We define the members Mp

α of the model at node p of rank α
(where we associate α with its canonical image in each of the associated models),
along with the transition functions fpq from Mp

α to Mq
α. We will usually drop

the subscripts and just write f as a polymorphic transition function. Similarly,
we will not adorn f with any α, since the definition of f will be uniform in α.
Do not confuse the associated modelsMp from above with theMp about to be
defined.

Definition 3. The universe Mp of the model at node p: First we define Mp
α

inductively on ordinals α. A member σ of Mp
α is a function with domain the

p.o. restricted to p (i.e. p and its extensions). Furthermore, σ(q) ⊆
⋃
β<αM

q
β.

In order to fulfill the basic Kripke condition, if τ ∈ σ(q), and r ≥ q, then
f(τ) ∈ σ(r). If q ≥ p, then f(σ) is defined to be σ � P≥q. Let Mp be

⋃
αMp

α.
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(If you’re wondering whether there are any such members, or whether instead
the definition is vacuous, see the proof of IZF below; the reader is invited to
think through now why the empty set is a set within this formalism.)

Proposition 2. Mp is the image of M〈〉 under the transition function.

Proof. Given σ ∈ Mp, let σ+ ∈ M〈〉 be such that σ+(q) = σ(q) when q ≥ p,
else σ+(q) = ∅. The (possibly non-constructive) case split can be avoided by
letting σ+(q) be {x | x ∈ σ(q) ∧ q ≥ p}.

Because this model has aspects of both a Kripke and a Heyting-valued model,
it is in actuality neither. So to give the semantics, we cannot rely on any
standard definition already extant in the literature. Rather, we have to give an
independent, inductive definition of satisfaction.

This is the point at which this section branches off from the model to be
constructed later on. In giving the semantics later for the ultimate model of
interest, we will make use of particular aspects of the particular class of Heyting
algebras chosen. It is not clear to the author whether this could all be subsumed
under some broader definition, applicable to all classes of Heyting algebras, or
at least generalized by axiomatizing the features of the Heyting algebras we will
actually need. But even if this is possible, it is another matter whether it is
desirable. Sometimes it’s easier to understand and not make mistakes with a
more concrete argument, an individual case, than a general case, especially the
first time through it. For these reasons, we defer the semantics until after the
development of the particular Heyting algebras we will use. (See the beginning
of the section on the Kripke semantics for further detail.)

At the same time, there is a closely related semantics that is general, appli-
cable to all choices of Heyting algebras. It seems like a good idea to present it
here, in part for the record, in part for possible future use, and in part because
it might well be the same thing as the semantics we actually use in this paper
(again, see the Kripke semantics section for more discussion). Even if it’s not,
it is a simpler version of what comes later, so the reader might choose to get
used to this mix of ideas by reading it through. This will occupy the remainder
of this section and is strictly speaking not necessary for the rest of the paper.

We will need the notion of a node being covered by a set of nodes, akin to
an open set in a topological space being covered by a collection of open sets, or,
more generally, a member of a Heyting algebra being (less than) the join of a
subset of the algebra.

Definition 4. We define p of length n being covered by P = {pj | j ∈ J} by
induction on n:

• For n = 0, 〈〉 is covered by only {〈〉}.

• For n = 1, p of the form 〈(T ,O)〉 is covered by P if each pj also has length
1, and pj ≥ p (so pj is of the form 〈(T ,Oj)〉, the point being that T is the
same), and {Oj | j ∈ J} covers O in the sense of T : O ≤

∨
{Oj | j ∈ J}.
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• For a length n + 1 > 1, some conditions are immediate analogues: each
pj extends p in the Kripke partial order, and each pj has length n + 1.
Furthermore, letting P � n be {pj � n | j ∈ J}, we have that P � n
is to cover p � n. Finally, we want to view P as a term for a set in
the model associated with p � n. Recall that a term for a Heyting-valued
model is an arbitrary collection of pairs 〈O, σ〉, where O is a member of
the Heyting algebra and σ is (inductively) a term. If we are consider-
ing a two-step iteration, then σ is (a term for) a pair 〈Ô, τ〉, where Ô
is a value from the second Heyting algebra. This can be abbreviated by
〈(O, Ô), τ〉. Whereas each pj is of the form 〈O0, . . . ,On〉, it induces a set
alt− pj := 〈(O0, . . . ,On−1),On〉, which is a term, in the language for an
n-fold forcing iteration, with value (forced to be) an open set in Tn. Of
course, the n-fold iteration in question is just the model associated with
p � n. So, letting Pn be {alt − pj | j ∈ J}, p � n 
H Pn is a collection of
open sets of Tn. Our final condition is that p � n 
H Pn covers p(n).

Definition 5. Implicitly in what follows, when we write “p 
K φ”, K for
Kripke, the parameters in φ are all in Mp. Also implicit is the application of
the transition function f , as need be.

• p 
K σ ∈ τ iff p is covered by some Q, and for all q ∈ Q there is a
σq ∈ τ(q) such that q 
K σ = σq.

• p 
K σ = τ iff for all q ≥ p and all υ ∈ σ(q), q 
K υ ∈ τ , and vice versa.

• p 
K φ ∧ ψ iff p 
K φ and p 
K ψ.

• p 
K φ ∨ ψ iff p is covered by some Q, and for each q ∈ Q either q 
K φ
or q 
K ψ.

• p 
K φ→ ψ iff for all q ≥ p if q 
K φ then q 
K ψ.

• p 
K ∀x φ(x) iff for all q ≥ p and σ ∈Mq q 
K φ(σ).

• p 
K ∃x φ(x) iff p is covered by some Q and for all q ∈ Q there is some
σ such that q 
K φ(σ).

Lemma 3. Each node satisfies the equality axioms.

Lemma 4. If Q covers p, and for each q ∈ Q we have q 
K φ, then p 
K φ.

Proof. By a straightforward induction on φ.

Corollary 5. Each node satisfies constructive logic.

Proof. Straightforward.

Theorem 6. This structure models IZF.
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Proof. For many of the axioms, we will merely give the construction of the
witness. We leave it to the reader to check that the witness given satisfies the
conditions listed above to be a set in the universe, and that the witness satisfies
the formula it is meant to be a witness for.

Empty Set: InM, the constant function with domain the entire tree always
returning the empty set is an object of rank 0, and represents the empty set.

Infinity: First, we show that each n ∈ ω is canonically represented by a set
in the model, inductively on n. The case n = 0 is done by the empty set, above.
Suppose for i ≤ n, i is represented in the model at the root by σi of rank i. Then
n+1 will be represented by σn+1, where σn+1(p) will be {f(σ0), f(σ1), ..., f(σn)}
(where once again f is the (polymorphic) transition function). Finally, ω will
be represented by σω, where σω(p) = {f(σn) | n ∈ ω}.

Pair: If σ, τ ∈Mp, then the pair is given by ρ, where ρ(q) = {f(σ), f(τ)}.
Union: For σ ∈Mp,

⋃
σ is given by (

⋃
σ)(q) =

⋃
{τ(q) | τ ∈ σ(q)}.

Extensionality: This follows fairly directly from the definition of forcing
equality.
∈-Induction: The sets in the model are built in M by an induction on the

ordinals in M. So induction in M can be used to show induction in M〈〉. For
a more detailed argument, the proof later of IZF for 
 contains a more detailed
exposition of ∈-Induction, which applies straightforwardly to the proof here as
well.

Power Set: Let σ ∈ Mp. Then let (℘(σ))(q) be {τ ∈ Mq | ∀r ≥ q τ(r) ⊆
σ(r)}.

Separation: Given σ ∈Mp, and φ(x) with parameters fromMp, let (Sep(σ, φ))(q)
be {ρ ∈ σ(q) | q 
 φ(ρ)}.

Collection: Suppose p 
 ∀x ∈ σ ∃τ φ(x, τ). Working in M, for each q ≥ p
and ρ ∈ σ(q), there is an α such that some τ in Mq

α satisfies q 
 φ(ρ, τ).
By Collection in M, there is a bounding set for all of the α’s needed. This
bounding set can be restricted to contain only ordinals, and then expanded to
be an ordinal itself, say β. Let Υ be such that, for q ≥ p,Υ(q) = Mq

β , which
suffices for a bounding set.

Remark 7. As usual, ⊥ as a symbol in the language (as opposed to a value in
a Heyting algebra) can be taken to be 0=1, now that we know what 0 and 1 are.
Unraveling the semantics, ⊥ comes down to ∅ ∈ ∅. In order for p to force that,
p would have to be covered by some Q such that for all q ∈ Q there is a σq ∈ ∅
such that q 
K ∅ = σq. Of course, there is no such σq. So this property holds
exactly when Q is itself empty. In other words, p 
K ⊥ iff p is inconsistent.

The reason this semantics does not work for current purposes is that, under
it, the last theorem of the paper does not seem to be valid. Information can be
smuggled in via the covers. For something to be validated in the given semantics,
it needs an arbitrary cover; within MK1 , a realizer that q is in some cover Q
could contain computational information that might be able to do something
we don’t want to be able to do.
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3 The formal topologies and their Heyting alge-
bras

We are still working simply under IZF.
Our primary task is now to define the right φ, the class of Heyting algebras

we will use to build the nodes. They will be induced by the possible counter-
examples B to FAN∆: B is a decidable set of binary strings, but is not uniform.
It is safe to assume that B is closed upwards. Mostly we’re interested in when B
is in addition a bar, there famously being such a creature in Kleene’s recursive
realizability model. The reason that we do not include being a bar in this
definition is that would then be another condition to check before being able to
use B. This is more than just a matter of convenience, or saving a little work.
When we’re working within a Heyting-valued extension, given by say T , of a
realizability model, different conditions within T might decide whether B is a
bar differently, and if B had to be a bar then we’d need to find an infinite path
through those conditions along which B became a bar, meaning either there
is such a path, or we’d have to find a non-uniform bar forcing such a path,
and all of a sudden the thicket starts to look impenetrable. Although it seems
unaesthetic to force paths that we really don’t need, this is a small price to pay
for having a theorem with a proof.

Let T be the complement of B. So T is a decidable, infinite tree. We will
generically shoot a branch through T .

We will define a formal topology S from T . To help make this paper self-
contained, we present a definition of a formal topology. Such definitions are not
uniform in the literature. Here we will use the one from [9], sec. 2.1. The same
reference also describes how a formal topology induces a Heyting algebra.

Definition 6. Formal topology: A formal topology is a poset (S,≤) and a re-
lation C between elements and subsets of S. (One should think of the elements
of S as open sets, with ≤ as containment and C as covering.) The axioms are:

• if a ∈ p then aC p,

• if a ≤ b and bC p then aC p,

• if aC p and ∀x ∈ p xC q then aC q, and

• if aC p and aC q then aC ↓ p∩ ↓ q,

where ↓ p is the downward closure of p.

Definition 7. The formal topology induced by B:
Let B be a decidable, upwards-closed, non-uniform set of binary strings, and

T its complement in 2<ω. A basic member Oµ of S is given by a node
µ ∈ 2<ω, and is the set of all nodes in T compatible with µ, that is, all initial
segments and extensions which are in T . Note that Oµ might well be finite,
which will ultimately make Oµ equal to the bottom element ⊥ of the Heyting
algebra. What is often called the length of µ will throughout this paper be called
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the height of µ, ht(µ), thinking of it as µ’s height in the binary tree, and to
distinguish it verbally from the length of a node p in the Kripke partial order
from the previous section.

The height of Oµ is the height of the shortest ν such that Oν = Oµ. To
see why this might be different from the height of µ itself, if µ = ν_i and µ’s
sibling ν_(1− i) is not in T , then Oµ = Oν .

A member O of S is a union of finitely many basic members of S. A witness
that O ∈ S, that is, a finite set Σ such that O =

⋃
µ∈ΣOµ, is called a base

for O; note that bases are not unique. The height of O is the smallest natural
number n at least as big as the height of each µ in some base Σ for O. That is,
O consists of those sequences compatible with some µ ∈ O of height n.

The partial order ≤ on S is just the subset relation ⊆.
A subset U of S covers O ∈ S, O /U , if there is a finite n such that, for all

µ ∈ T of height n, either µ 6∈ O or, for some OU ∈ U of height at most n, we
have Oµ ⊆ O and Oµ ⊆ OU . In symbols, U covers O iff

∃n ∀µ ∈ T ht(µ) = n→ (µ 6∈ O ∨ ∃OU ∈ U ht(OU ) ≤ n ∧ Oµ ⊆ (O ∩OU )).

For any such n, we say that U covers O by height n.

Remark 8. By choosing the base to be empty, ∅ ∈ S.
If the set of nodes compatible with µ is finite, then Oµ is covered by the

empty set: just choose n to be large enough so that the tree beneath µ has died
by height n. Hence it will represent the bottom element when the topology is
viewed as a Heyting algebra.

For µ ∈ T and O ∈ S it is decidable from a base for O whether µ ∈ O.
Note that if U covers O by n then U covers O by any k ≥ n.

Proposition 9. (S,≤, /) from above constitutes a formal topology.

Proof. 1. Suppose O ∈ U ; we need to show U covers O. Let Σ be a base for O,
witnessing that n is the height of O. As has already been remarked, for all µ of
height n, it is decidable (from Σ) whether µ ∈ O or not. If so, Oµ ⊆ O, so OU
can be chosen to be O itself.

2. Suppose O1 ⊆ O0 and U covers O0. We need to show U covers O1. We
can assume that we have bases Σ0 and Σ1 for O0 and O1 respectively such that
no µ0 ∈ Σ0 extends any µ1 ∈ Σ1. We can also assume that U covers O0 by
height n. We will find a k such that U covers O1 by k. Let m be the height of
the longest µ ∈ Σ1. Let k be the larger of m and n. Consider any µ of height
k. If µ 6∈ O1, then we are done. Else consider the initial segment ρ of µ which
is in Σ1. Also consider µ � n ∈ O1; recalling that O1 ⊆ O0, we conclude that
µ � n ∈ O0. By the choice of n, let OU ∈ U be such that Oµ�n ⊆ OU . Because
Oµ ⊆ Oµ�n, Oµ ⊆ OU , and we are done.

3. Suppose that U covers O by n, which we also take to be at least the
height of O, and that every OU ∈ U is covered by V. We need to show that V
covers O.

For each of the finitely many µ’s of height n that are in O let OUµ be as
given by the definition of covering. Each such OUµ is covered by V, which means
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there is a height nµ as in the definition of covering, which we can also take to
be at least as big as ht(OUµ) and n. Let N be at least as big as each nµ. We
would like to show that V covers O by N .

Let ρ be of length N and in O. Letting µ be ρ � n and using the U covering
of O by n ≤ N , we have OUµ and nµ. By the V covering of OUµ, there is a
member OV of V such that Oρ ⊆ OV . Note that the height of OV is at most
nµ, which is at most N .

4. Suppose O is covered by both U and V. We need to show that O is
covered by W = {O′ | ∃OU ∈ U O′ ⊆ OU and ∃OV ∈ V O′ ⊆ OV}.

We can assume that both U and V cover O by n, and will show that W
covers O by n. Let µ ∈ O have height n. Let OU be as given by U covering
O – Oµ ⊆ OU – and OV be as given by V covering O – Oµ ⊆ OV . Letting
O′ = OU ∩ OV suffices.

The reason for this formal topology is so that we can take the Heyting-valued
model MT over it.

4 The Kripke semantics

Now we specialize the general Kripke structure of constructive models from the
earlier section to the case at hand, namely where φ(x) picks out the Heyting
algebras S induced by the formal topology on a decidable, infinite, binary tree
T .4

What working with these particular Heyting algebras does for the semantics
is that we can include heights (related to the heights of open sets) directly
into the semantics, which are not available in general. The semantics defined
earlier used a general notion of cover. In our context, this would allow for the
definability of the solution to the halting problem, because information can be
smuggled into realizers of membership in arbitrary covers, preventing a proof of
the last theorem of this paper. That is why we have to work with a restricted
notion of cover, one based on computability and containing less information.5

The covers we will use come in the form of membership functions, which are
define via heights.

Definition 8. A height of a node p:
For a Kripke node p, we define what it is for h, a tuple of natural numbers of

the same length as p, to be a height of p, in notation ht(p) ≤ h. For reasons that

4This is the moment when the definition of the Kripke partial order switched from that
of an earlier version, in which the inconsistent nodes were removed. Whether these nodes
are present or removed makes no difference in a classical meta-theory. Within MK1 though,
the recursive realizability model, the consistency of a node is not a computably enumerable
property, but rather co-c.e., inconsistency being so enumerable. To avoid having to do some
sort of consistency check, we allow inconsistencies.

5When using the earlier semantics, although we don’t have a proof of the last theorem,
we also don’t have a counter-example. It is an interesting question whether the following
development could be taken as a instance of the earlier notion of cover. Perhaps the previous
general semantics particularizes to the semantics about to be given.
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will be spelled out later, it is inconvenient to take ht to be a function, despite
the suggestive notation ht(p); rather, ht(p) ≤ h is a relation between p and h,
meant to convey the idea “if ht were a function then ht(p) is componentwise
less than or equal to h.”

For the vacuous case of p = 〈〉, the only tuple of the same length is the empty
tuple 〈〉 itself, which is a height of p. (It is unfortunate that in this case p and
h are literally the same object. Whether 〈〉 is meant as a node p or as a height
h should be clear from the context. Be that as it may, this occurs only in this
degenerate case.)

For p of length n+1, p has height h if p � n has height h � n and p � n 
H Opn
has height at most h(n).

The idea is that Op0 has height at most h(0), and p � 1 
 Op1 has height at
most h(1), and so on. Note that nodes have both heights and lengths: as an
n-tuple, p has length simply n.

Lemma 10. Every node p has a height.

Proof. By induction on the length of p. This is vacuous when the length is 0,
and trivial when the length is 1, since Op0 is an open set, which by definition
has a base and hence a height. We show in detail the case of the length being
2, leaving the general case as a straightforward, albeit painful, exercise for the
reader.

Since Op0 
H “Op1 is an open set”, then Op0 
H “Op1 has a base and therefore
a height”. The issue is that no particular number may be forced to be a height.
What we have is that Op0 
H “∃h h is a height of Op1 ,” which means that there
is a cover U of Op0 such that every member of U forces a particular integer to
be a desired height. If U were finite, we could simply take the maximum of
the integers so forced. But it may not be. But it doesn’t have to be. By the
definition of covering, U covers Op0 by some height n. Go through the binary
strings of height n. Those not in Op0 can be ignored. The others form a finite,
decidable set. Each of them induces a subset of some member of U , which forces
a particular height for Op1 . The maximum h1 of those heights is therefore forced
by Op0 to be at least as big as ht(Op1). So the function such that h(0) = n and
h(1) = h1 is a height for p.

Remark 11. If we had instead defined ht(p) as a function such that p � n 
H
ht(Opn) = h(n) then ht(p) might not always be defined, because different exten-
sions of p � n might force different heights for Opn. Heights are taken to be tuples
of actual natural numbers in the ground model, which is a mismatch with the
components of p which are in general just terms for open sets.

It is easy to see that the heights of p are closed upwards (i.e. if h is pointwise
at least as big as some height of p then h is also a height of p).

Corollary 12. If hp is a height of p, and q ≥ p, then there is a height hq of
q which (when restricted to the domain of hp) is pointwise at least as big as hp
(i.e. if i is less than the length of p then hq(i) ≥ hp(i)).

14



Proof. Take the pointwise maximum of hp and any height of q.

In a sense, one could do away with heights as tuples and use simply the
maximum of h’s components. But we’re going to want to extend to tuples the
idea of picking a height of the binary tree and going through all the strings at
that height. This involves, for a pair say, having a height for the first tree, and
for each string of that height, seeing what it tells us about other strings of that
height, like whether they are in the second tree. The challenge is that strings on
the first tree might have to be very long before they start to force facts about
even short strings of the second tree. So if we took heights to be single natural
numbers h, strings of height h on the first tree might tell us little about strings
of height h on the second. That is why we allow heights to vary component by
component.

Definition 9. Heights of tuples and induced nodes:
For ρ an n-tuple of binary sequences, the height of ρ is the n-tuple of the

heights of the components of ρ: ht(ρ) = 〈ht(ρ(0)), ht(ρ(1)), . . . , ht(ρ(n− 1))〉.
Each such ρ induces a node pρ: Opρi = Oρ(i). (Actually, this makes sense

only when we have the topologies Ti at hand. So this notion will be used only in
a context in which the Ti’s are already determined.)

We need to extend the notion of a binary sequence µ being a member of an
open set O to tuples ρ. This starts to get complicated, because membership
in Opi is not absolute, but only forced by p � i or extensions thereof (of the
same length). The definition of membership that suggests itself is that for
all i less than the length of p, pρ�i 
H ρ(i) ∈ Opi . The issue with that is
inconsistent nodes: if for instance Opi−1 = ⊥ (in its Heyting algebra) then for
sure pρ�i 
H ρ(i) ∈ Opi , even when it is otherwise clear that ρ(i) is not in Opi .
At the same time, pρ�i will also force ρ(i) 6∈ Opi , even in a setting in which ρ(i)
really is in Opi .

The way we will deal with this situation is to give up on determinism. We
must decide whether or not we want to consider ρ(i) to be in Opi , allowing that
we may well decide we want both to take ρ(i) to be in Opi and to take ρ(i) not
to be in Opi .

Definition 10. For ρ of the same length n as p, we say that mρ witnesses
whether ρ is in p if either:

• mρ = 1, and for all i < n, pρ�i 
H ρ(i) ∈ Opi , in which case mρ witnesses
that ρ is in p, or

• mρ = 〈0, j〉 for some j < n, pρ�i 
H ρ(i) ∈ Opi for all i < j, and
pρ�j 
H ρ(j) 6∈ Opi , in which case mρ witnesses that ρ is not in p.

A membership function m for p is a function with domain all tuples ρ
of some fixed height hm of p such that m(ρ) witnesses whether ρ is in p; hm is
called the domain height of m.

A height h of p is a canonical height if it is the height hm of some mem-
bership function m for p.
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Lemma 13. If g is a height of p then there is an h pointwise at least as big as
g which is a canonical height of p.

Proof. Again, we do the case in which the length in question is 2.
Membership in T1 is (forced to be) decidable. So membership in an open

subset of T1 is decidable from a base for the open set. In particular, for any
string µ of height g(1), Op0 
H µ ∈ Op1 ∨ µ 6∈ O

p
1 . That means that Op0 is

covered by, say, Uµ, each member of which decides µ ∈ Op1 one way or the other.
Furthermore, this covering happens by some height, say nµ, which we can take
to be at least as big as g(0). Letting h(0) be the maximum of the nµ’s and h(1)
be g(1), h is as desired.

Membership functions will be used in the definition of the Kripke semantics.
They will replace the arbitrary covers present in the general Kripke semantics
from section 2.

Definition 11. The restriction of a tuple to a height, ρ � h: Suppose ρ is at
least as long as h, and the height of ρ is at least as big pointwise as h beneath
the length of h. (That is, for i less than the length of h, the height of ρ(i) is
at least h(i).) Then ρ � h is the function with domain the length of h such that
(ρ � h)(i) = ρ(i) � h(i).

Lemma 14. If mp is a membership function for p with domain height g, and
q ≥ p, then there is a membership function mq for q with domain height h
pointwise at least as big as g such that mq extends mp in that, for all ρ in the
domain of mq, if mp(ρ � g) = 〈0, i〉 then mq(ρ) = 〈0, j〉 for some j ≤ i .

The idea is that once a node pρ�g is seen to be inconsistent then any extension
of it, say ρ, will also be declared inconsistent, and for a reason no bigger than
the earlier reason. (We want to allow for i to shrink because, for instance, it
could be that ρ(0) is a lot longer than ρ � g(0), and so perhaps we can see that
the former is not in T p0 whereas the latter is.)

Proof. The construction in the previous lemma can begin from mp.

The nodes which m evaluates to 1 form a cover for p, and so we have the
following definition.

Definition 12. Pm = {ρ ∈ dom(m) | m(ρ) = 1}

By way of notation, the semantics about to be introduced will be written
as simply 
. It is to be distinguished from realizability semantics 
r, and the
Heyting semantics 
H , and also from the earlier Kripke semantics 
K , even
though the latter is what 
 is most similar to.

Definition 13. Implicitly in what follows, when we write “p 
 φ”, the parame-
ters in φ are all inMp. Also implicit is the application of the transition function
f , as need be.
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• p 
 σ ∈ τ iff for some membership function m of p and for every ρ ∈ Pm
there is a σρ ∈ τ(pρ) such that pρ 
 σ = σρ.

• p 
 σ = τ iff for all q ≥ p and all υ ∈ σ(q), q 
 υ ∈ τ , and vice versa.

• p 
 φ ∧ ψ iff p 
 φ and p 
 ψ.

• p 
 φ ∨ ψ iff for some membership function m of p and for every ρ ∈ Pm
either pρ 
 φ or pρ 
 ψ.

• p 
 φ→ ψ iff for all q ≥ p if q 
 φ then q 
 ψ.

• p 
 ∀x φ(x) iff for all q ≥ p and σ ∈Mq q 
 φ(σ).

• p 
 ∃x φ(x) iff for some membership function m of p and for every ρ ∈ Pm
there is a σρ such that pρ 
 φ(σρ).

Recall that the symbol ⊥ is taken to be 0=1, and is used implicitly in
negations (¬φ = φ → ⊥). If p is an inconsistent node, then it can be shown
inductively on φ that p 
 φ (because some membership function m never takes
on the value 1, so Pm is empty).

Lemma 15. Monotonicity: if p 
 φ and q ≥ p then q 
 φ.

Proof. By induction on φ.
∈: For mp such a witnessing membership function for p (with canonical

height g), let mq be as given in the previous lemma. If mq(ρ) = 1 then mp(ρ �
g) = 1. Let σρ be σρ�g. Since pρ ≥ pρ�g, by induction σρ is as desired.

=, →, ∀: Immediate, since the original definitions quantified over all exten-
sions.
∧: Immediate by induction.
∨,∃: Similar to ∈.

Lemma 16. Each node satisfies the equality axioms.

Lemma 17. Each node satisfies constructive logic.

Proof. Straightforward.

Theorem 18. This structure models IZF.

Proof. For many of the axioms, we will merely give the construction of the
witness, and leave it to the reader to check that the witness given satisfies the
conditions listed above to be in the universe.

Empty Set: In the ground modelM, the constant function with domain the
entire tree always returning the empty set is an object of rank 0, and represents
the empty set.

Infinity: First, we show that each n ∈ ω is canonically represented by a set
in the model, inductively on n. The case n = 0 is done by the empty set, above.
Suppose for i ≤ n, i is represented in the model at the root by σi of rank i. Then
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n+1 will be represented by σn+1, where σn+1(p) will be {f(σ0), f(σ1), ..., f(σn)}
(where once again f is the (polymorphic) transition function). Finally, ω will
be represented by σω, where σω(p) = {f(σn) | n ∈ ω}.

Pair: If σ, τ ∈Mp, then the pair is given by ρ, where ρ(q) = {f(σ), f(τ)}.
Union: For σ ∈Mp,

⋃
σ is given by (

⋃
σ)(q) =

⋃
{τ(q) | τ ∈ σ(q)}.

Extensionality: This follows fairly directly from the definition of forcing
equality.
∈-Induction: What this comes down to is that all of the models are actually

well-founded. That enables us to use ∈-Induction from the ground model. The
challenge is that if p 
 σ ∈ τ , as sets in the ground model σ is not actually a
member of τ ; rather, at best, σ ∈ τ(p). We still have that σ occurs before τ , in
the sense that σ is in the transitive closure of τ . This suggests using a stronger
form of induction, namely induction on the transitive closure of a set. This is
like the difference between strong and weak induction on the natural numbers.
In weak induction, the inductive hypothesis is φ(n), from which one is to derive
φ(n + 1); in contrast, in strong induction, one is to “remember” all previous
values, in that the inductive hypothesis is ∀k < n φ(k), from which one is to
derive φ(n).

In more detail, suppose p 
 ∀x ((∀y ∈ x φ(y))→ φ(x)). We must show that
p 
 ∀x φ(x).

Work in the ground model. Given a term σ from some Mq, q is uniquely
determined by σ, since σ is a function with domain the set of extensions of
q. Therefore we can use the notation qσ to indicate this q. Let ψ(x) be “for
every member of the transitive closure of {x} which is a term σ with qσ ≥ p,
qσ 
 φ(σ).” We will show ∀x ψ(x) by ∈-Induction. Toward that end, assume
ψ(y) for all y ∈ x. We must show ψ(x). Let z be in the transitive closure of
{x}, and also be such a term, with qz ≥ p. Either z ∈ TC({y}) for some y ∈ x
or z = x. In the former case, by the inductive hypothesis we are done. In the
latter case, notice that p 
 ∀y ∈ x φ(y), because any such y is (forced to be
equal to something) in the transitive closure of some member of x. Using the
main inductive hypothesis, p 
 φ(x). We have just shown that if ψ(y) for all
y ∈ x then ψ(x). By ∈-Induction applied to ψ, we have that for all x ψ(x).

Since x ∈ TC({x}) in particular, if x is a term with qx ≥ p then qx 
 φ(x).
In other words, p 
 ∀x φ(x), as was to be shown.

Power Set: Let σ ∈ Mp. Then let (℘(σ))(q) be {τ ∈ Mq | ∀r ≥ q τ(r) ⊆
σ(r)}.

Separation: Given σ ∈Mp, and φ(x) with parameters fromMp, let (Sep(σ, φ))(q)
be {ρ ∈ σ(q) | q 
 φ(ρ)}.

Collection: Suppose p 
 ∀x ∈ σ ∃τ φ(x, τ). Working in the ground model
M, for each q ≥ p and ρ ∈ σ(q), there is an α such that some τ inMq

α satisfies
q 
 φ(ρ, τ). By Collection inM, there is a bounding set for all of the α’s needed.
This bounding set can be restricted to contain only ordinals, and then expanded
to be an ordinal itself, say β. Let Υ be such that, for q ≥ p,Υ(q) =Mq

β , which
suffices for a bounding set.

Actually, more can be said here. In ZF set theory, over the other ZF axioms,
Replacement, Collection, and Reflection are equivalent. Within the context of
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IZF though, over the other IZF axioms, Reflection implies Collection, which
itself implies Replacement, yet both of those implications apparently6 do not
reverse. Often Replacement is more difficult to work with. For instance, in
our context, p might force φ to be a function, so p would force that the y
such that φ(x, y) is unique – but the choice of a term to stand for such a y is
not! So using Replacement in the meta-theory to get Replacement in the model
seems hopeless.7 Typically one can and does use Collection or Reflection in the
meta-theory to get the same axiom holding in the model. Reflection, albeit the
strongest of these principles, is usually the easiest to show. The assertion ψ that
some statement φ you would like to reflect is true within the Kripke model is
itself some assertion, even if more complex than φ, in the ground model. One
uses Reflection in the ground model to get a set X in which ψ holds. Then
one takes the Kripke model as built within X. Because ψ holds in X, φ holds
in X’s version of the Kripke model, and because X is a set, its version of the
Kripke model is merely a set within the full Kripke model. (If you want to
know why Reflection is true in the ground model, one can consider the ground
model as being built within a classical meta-theory, and use Reflection in V to
get Reflection in the ground model, in a similar fashion as above.)

5 FAN∆ does not imply FANc

First we will show that the model satisfies FAN∆, and then that is falsifies
FANc.

By way of showing the former, we first indicate why forcing with ST , T the
complement of B, eliminates B as a non-uniform bar. Then we show how the
construction strings these various forcings together to eliminate all such possible
B’s, resulting in FAN∆ being true.

Theorem 19. In MT , the generic G is (identifiable with) an infinite branch
through T .

Proof. We can identify the generic G with {〈Oµ, ν〉 | ν ⊆ µ,Oµ a basic open
set}. Essentially all that needs showing is that O∅ 
H “for all k there is a unique
ν of height k with ν ∈ G.” (Of course, G being a branch also needs that the
various ν’s also cohere with one another. But that’s easy: if ⊥ 6= Oµ 
 ν ∈ G,
then µ and ν are compatible. (Note that if µ has a unique child in T , then ν
could actually be longer than µ.) So if two ν’s are forced to be in G, choose µ
longer than both ν’s forcing those facts; then both ν’s are initial segments of µ,
hence compatible with one another.)

6That is, it is known that Replacement does not imply Collection; see [8]. It is known
that Collection does not imply Reflection over CZF + Separation, which is close to IZF, so
presumably this non-implication is the case also over IZF, although that has yet to be proven;
see the end of [12] for an example and discussion.

7This is a known phenomenon, already having occurred elsewhere. For an example, see
[11].
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Since the natural numbers in the sense of MT can be identified with those
of the meta-theory, it suffices to fix a k in the sense of V , and show that O∅ 
H
“there is a unique ν of height k with ν ∈ G.” It is easy to see that if Oµ is a basic
open set with µ of height k then Oµ 
H “µ is the unique member of G of height
k.” More to the point, Oµ 
H “There is a unique member of G of height k.” Let
U be {Oµ | µ has height k}. It is trivial to show that U covers O∅ by height k.
By the semantics of Heyting-valued models, O∅ forces the same. (Notice that
we are not in the Kripke model, so we are not to use the Kripke-esque semantics
given above. Rather, the claim is about a Heyting extension.)

Corollary 20. For p a node in the Kripke partial order, with final entry (T,O),
and B (a term for) the complement of T , p 
 B is not a bar.

Proof. Let G be the generic for forcing with T . The function (with domain the
partial order from p onwards) with constant output G (more accurately, the
canonical image of G in the input’s associated model) witnesses that B is not a
bar.

The next two theorems finish this paper. This is the point at which we must
work in MK1 .

Theorem 21. 〈〉 
 FAN∆.

Proof. The idea is simple enough. If, at a node, B is forced to be a decidable
bar, then B must also be forced to be uniform, because, if not, the node would
have an extension given by forcing with the complement of B, showing that
B could not have been a bar. We need to check the details though, to guard
against things like the use of classical logic and to make sure we’re using the
semantics of the model at hand. For better or worse, I know of no other way to
do this than to unravel the statement to be shown, using the semantics given.

We need to show 〈〉 
 FAN∆, working withinMK1
, meaning we must find a

realizer e for the statement 〈〉 
 FAN∆. As a reminder, 〈〉 is the empty sequence,
the bottom node in the partial order underlying the model. For reference, FAN∆

is the assertion “for all B, if B is an upwards-closed decidable bar (in 2<ω), then
B is uniform, i.e. there is a natural number n such that all binary sequences of
height n are in B.”

Unpacking the meaning of 
, we need to show that withinMK1 , if B ∈Mp

then p 
 “if B is such a bar then B is uniform.” That means that

if t 
r “p is a node and B ∈Mp” then {e}(t) 
r “p 
 (if B is such a bar

then B is uniform).”
(1)

To save on notation, we will suppress mention of t. This means that we must
show

e 
r “for all q ≥ p, if q 
 B is such a bar then q 
 B is uniform.” (2)
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Again suppressing the realizer that q ≥ p, we must show

e 
r “if q 
 B is such a bar then q 
 B is uniform.” (3)

So, suppose f 
r “q 
 B is such a bar;” we must have that {e}(f) 
r “q 
 B
is uniform.”

The Hypothesis: We will have occasion to refer to realizers computable
from f (and from other functions too). In all such cases there will be a specific
construction of the derived realizer, but there is little reason to be so explicit.
So we use the notation f∗ in such cases. For instance, there is a realizer g,
easily computable from f , with g 
r “q 
 B is decidable;” we will use instead
the notation f∗ 
r “q 
 B is decidable.” Unpacking that yields

f∗ 
r “q 
 (for all µ ∈ 2<ω, either µ ∈ B or µ 6∈ B).” (4)

Since 2<ω does not change from node to node, that means

f∗ 
r “for all µ ∈ 2<ω, q 
 (either µ ∈ B or µ 6∈ B).” (5)

Identifying a realizer that µ ∈ 2<ω with µ itself, that becomes

for all µ ∈ 2<ω, f∗µ 
r q 
 (µ ∈ B ∨ µ 6∈ B). (6)

(The notation f∗µ means it is uniformly computable from f and µ.) And that
means that

for all µ ∈ 2<ω, f∗µ 
r “there is an mµ such that

mµ is a membership function for q

and for each ρ ∈ Pmµ either pρ 
 µ ∈ B or pρ 
 µ 6∈ B.”
(7)

Unpacking further,

for all µ ∈ 2<ω there is an mµ such that

f∗µ 
r “mµ is a membership function for q

and for each ρ ∈ Pmµ either pρ 
 µ ∈ B or pρ 
 µ 6∈ B.”
(8)

In order to realize that mµ is a membership function, it must be realized that
mµ is a function with domain determined by hmµ ; in other words, f and µ
together computes mµ and hmµ . To bring that out in the notation, instead of
mµ we will write mf∗µ.

f∗µ 
r “mf∗µ is a membership function for q

and for each ρ ∈ Pmf∗µ either pρ 
 µ ∈ B or pρ 
 µ 6∈ B.”
(9)

The Conclusion: Having just unpacked the hypothesis, we will now analyze
the conclusion. Recall what we need to show: {e}(f) 
r “q 
 B is uniform;”
i.e. {e}(f) 
r “q 
 there is a bound n witnessing that B is uniform;” which is

{e}(f)∗ 
r “there is a membership function m for q,

and for all ρ ∈ Pm there is some object n such that

pρ 
 (n is a natural number witnessing the uniformity of B).”

(10)
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That comes down to the computability from {e}(f) of a function m such that

{e}(f)∗ 
r “m is a membership function for q,

and for all ρ ∈ Pm there is some object n such that

pρ 
 (n is a natural number witnessing the uniformity of B).”

(11)

Since this is complicated enough, we’re now going to build up somewhat
slowly. We will examine several cases, based on the length of q. Since e has
access to a realizer that q is a node, e has access to q’s length, and so can make
this case distinction.

Case I: For the first pass, suppose q = 〈〉. The only sequence of length 0 is
the empty sequence, so the only possible membership function for q is the m with
domain {〈〉}. Furthermore, it could not be the case that m(〈rangle) = 〈0, j〉,
since j would have to be less than n, which is 0, so m(〈〉) = 1. Hence, by the
hypothesis, we have f∗µ 
r “either 〈〉 
 µ ∈ B or 〈〉 
 µ 6∈ B.” Similarly for
the conclusion: we must have {e}(f) 
r “there is some n such that 〈〉 
 n is
a natural number witnessing the uniformity of B.” The obvious algorithm to
find a uniform bound for B is to go through the various binary sequences µ in
some order so that a sequence is examined before any longer sequence; compute
f∗µ; see whether f∗µ realizes 〈〉 
 µ ∈ B or 〈〉 
 µ 6∈ B; continue until it finds
a height n with all sequences of that height forced into B: the result of that
computation suffices. All there is left to do in this case is to show that this
algorithm terminates. If not, then every K1 realizer will realize that B is not
uniform. So, in MK1 , letting T be the complement of B, 〈(ST ,O〈〉)〉 is a node
(where ST is the formal topology induced by T ). (Actually, there is a subtlety
here. B is a set in the Kripke model. In order for ST to give a node, B would
have to be a set in MK1

instead. This is not a real problem though. Using the
decidability of B inM, a set can be built inMK1

which has the same members
as B is forced to have. By abuse of notation, we call this MK1 set B also.) By
the corollary, 〈(ST ,O〈〉)〉 
 “B is not a bar,” contradicting the assumption that
f 
r “〈〉 
 B is (such) a bar.”

Case II: For our second pass, suppose that q has length 1: q = 〈(ST ,O)〉.
Consider the following algorithm. Go through the binary sequences µ (shorter
before longer). Computer mf∗µ. Go through the members of Pmf∗µ and see
if they force µ in or out of B. Occasionally you might find a sequence ρ ∈ O
forcing B to be uniform. (That would be a sequence such that, for some n,
every binary sequence of height n is forced to be in B by pρ; of course, even µ’s
of the same height might have different mf∗µ’s and hmf∗µ ’s, so the information
that µ ∈ B might have been presented to us not via pρ but rather pρ′ for some
proper initial segment ρ′ of ρ, but no matter.) Keep track of those ρ’s. Also
keep track of the extensions of those ρ’s in O. If at any time all of the members
ρ in O of some fixed height are seen to force B to be uniform, then that provides
a membership function for q as desired, with the history of that computation as
the witness. It bears observation that it is necessary to consider not just the ρ’s
presented to us via the mf∗µ’s, but also their extensions. That’s because the
mf∗µ’s might have domains all bounded at a level not forcing B to be uniform
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but the troublesome nodes in O are all on dead ends. (Example: Suppose O
contains 〈0〉 but no extensions of it. Let p〈0〉 
 B = ∅ and p〈1〉 
 B = 2<ω.
Then you can find out everything you want to know about membership in B
by going through ρ’s of height 1, and if that’s all you do, you will never find an
entire level of O forcing B to be uniform.)

All that we have to show for this case is that the algorithm just sketched
terminates. Suppose not. We are of course aiming at a contradiction. The
contradiction will be with q forcing B to be a bar. It would be nice if we could
force with the complement of B to generate a path missing B. But in order to
be allowed to do that, B would have to be non-uniform, and there is no reason
to think q forces B not to be uniform. Some nodes in q may well force B’s
uniformity. In fact, the nodes in O forcing B to be uniform could even be dense
in O, so maybe even no open subset of O forces B not to be uniform. That
means we first have to extend q, via a sub-forcing of q’s component ST , to get
B to be non-uniform, and then extend again to get the desired path.

So let’s return to the algorithm from above. Let’s specify its operation in
a bit more detail. At stage n, consider all µ’s of height n. Calculate each
hmf∗µ , which is effectively a natural number (actually, a sequence of length 1
of a number), and call the maximum hn. Without loss of generality, hn is an
increasing function of n. Go through the members ρ of O of height hn. If pρ
is seen to force B to be uniform, put ρ (and all of its extensions) into a new
set we’re defining, BU . Also any ρ of height hn not in O is to be put into BU .
Else do not put ρ into BU . This defines BU within MK1 . It is easy to see that
BU is decidable (as all ρ’s of height hn are decided at stage n, and hn ≥ n),
and upwards closed. The hypothesized non-termination of the algorithm means
exactly that BU is not uniform. Of course, the decidability, upwards closure,
and non-uniformity of BU are all inMK1

, but they carry over toMq. (Strictly
speaking, when working withinMq we must refer to the canonical image of BU ,
but for notational convenience we will use the same name for such an image
as for the original set.) So, letting TU be the complement of BU , there is an
extension r = q_(STU ,O〈〉) of q.

We will need some facts about TU and about forcing with TU later, which
we may as well establish now. For one, TU ⊆ T , actually TU ⊆ O. For another,
because TU ∈ MK1 , many fact about Mr don’t depend on the ST forcing
at all, from r’s zeroth component, but just on STU . In detail, an extension
〈(ST ,Oκ), (STU ,Oλ)〉 of r might force σ ∈ τ : Oκ 
ST “Oλ 
STU σ ∈ τ”, where

ST and 
STU are Heyting algebra forcings, earlier called 
H ; the notational
change is just to make the Heyting algebra explicit. If σ and τ are terms in
MK1

for forcing with STU , then the contribution of Oκ is irrelevant, and the
earlier assertion is simply equivalent with “Oλ 
STU σ ∈ τ”. Another way to
look at this is that since TU is inMK1 , r does not represent an iterated forcing
so much as a product forcing.

We would like to extend r by forcing with the complement of B, rightly
interpreted, because that would then show that B is not a bar in some extension
of q, the desired contradiction. The idea here is that STU is a subset of O, so B,
as a term in the language for forcing with ST , can be restricted to a term B� in

23



the language for STU . In a bit of detail, a term consists of pairs 〈Oσ, σ〉, where
Oσ is an open set and σ is (inductively) a term. In the case of B, because B is
forced to be a set of binary strings, without loss of generality we can take σ to be
a canonical term for a binary string µ, which by abuse of notation we will also
call µ. (More generally, σ might merely be a term for such a sequence, partially
unspecified, which needs extensions of q to become fully specified. To handle
this more general situation, the construction of B� from B should be understood
as working not just on the members of B but also hereditarily.) Also, the open
set Oσ can always be taken to be a basic open set Oν (ν a binary string), for
conceptual simplicity. If 〈Oν , µ〉 ∈ B and ν ∈ STU , then place 〈Oν , µ〉 into B�.
If in contrast ν 6∈ STU , then do not place 〈Oν , µ〉 into B�. The idea here is that
B� is to act like B if the forcing were with TU instead of T . Of course, we could
achieve the same result by interpreting B within STU . But we will in contrast
want to see, within ST , how B would behave under STU . That is the purpose
of B�: it behaves when forcing with ST the way B behaves when forcing with
STU .

The following facts should be brought out. Despite their tightness with each
other, B and B� can be forced by extensions of r to look very different from
one another, as the former is determined by forcing with ST and the latter by
STU , two independent forcings. That much being understood, both terms can
be interpreted under each forcing. There we do see relations, because when
forcing with one Heyting algebra H both B and B� are interpreted under the
same generic. For one, STU 
H B = B�. For another, because B� is literally a
subset of B, any Heyting algebra will force “B� ⊆ B”. For a third, if ν ∈ TU ,
and Oν 
ST µ ∈ B, then Oν 
STU µ ∈ B�. Perhaps surprisingly, the converse
to that does not hold! It could be that ν leads to a dead-end in TU , so Oν forces
everything there, whereas it doesn’t in T .

We want to show that r 
H B� is decidable, upwards closed, and non-
uniform. Once we do that, we will be able to extend r by forcing with the
complement of B�, which we will call T �, and can then show our contradiction.
The decidability and upwards closure are inherited from q and B. As for the
non-uniformity, suppose that r′ ≤H r is such that r′ 
H B� is uniform. We
must show r′ =H ⊥. For conceptual simplicity, and without loss of generality,
assume r′ is given by basic open sets: r′ = 〈(ST ,Oκ), (STU ,Oλ)〉. By the
discussion above, Oλ 
STU B� is uniform. With a bit of work, we can get
particular natural numbers n and k such that every extension ι of λ in TU of
height n forces (in the sense of STU ) B� to be uniform by k (meaning each string
of height k is forced to be in B�); moreover, the witness to any ξ of length k
being in B� is some initial segment of ι (i.e. 〈Oι′ , ξ〉 ∈ B� for some initial
segment ι′ of ι). Since B� is literally a subset of B, the same holds for B in
place of B�.

What would our algorithm for building BU and TU have done with such an ι?
Possibly when checking the realizability of “pι 
 ξ ∈ B∨pι 
 ξ 6∈ B”(ξ of length
k), the first option would always have been chosen (that is, for all ξ), so ι would
have been placed into BU , and is not even in TU . It is entirely possible though
that the realizer gave us the second option. Since the first option still remains
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true, that means that pι is inconsistent. In conclusion, for every extension ι of
λ of length n in TU , pι =H ⊥. Hence Oλ = ⊥, and r′ = ⊥.

Therefore s := r_〈(ST � ,O〈〉)〉 is an extension of r, and in Ms, by the

previous theorem the generic G is an infinite branch through T �. Since q 
 B
is a bar and s ≥ q, s 
 there is a node in G ∩ B. Let m be a canonical height
of s such that for every ρ ∈ Pm pρ forces a particular member of G ∩ B. As
a reminder, such a ρ is a triple 〈ρT , ρTU , ρT �〉. Because TU ⊆ O, there is a ρ
with ρT ∈ TU and compatible with ρTU . Fix such a ρ, and let pρ 
 µ ∈ G ∩B.
Because pρ 
 µ ∈ G, pρ 
 µ ∈ T �. So pρ 
 µ 6∈ B�. On the other hand,
pρ 
 µ ∈ B. But since ρT and ρTU are compatible, no disagreement can be
forced between B and B�, for our contradiction.

Case III: It is time to finish the proof of this theorem. Most of the work
was done in Case II, so we will be somewhat sketchy.

Let q be a node of length at least 1. To recall, we have a realizer f that
q 
 B is an upwards closed decidable bar. We are searching for a computable
membership function for q and a realizer that everything the membership func-
tion evaluates to 1 forces B to be uniform. We will mimic the argument in Case
II as much as possible.

Go through the binary sequences µ (shorter before longer). Computer mf∗µ.
Go through the members of Pmf∗µ and see if they force µ in or out of B.
Occasionally you might find a member ρ of q forcing B to be uniform. Keep
track of those ρ’s. Also keep track of the extensions of those ρ’s that are members
of q. If at any time all of the members ρ of q of some fixed canonical height are
seen to force B to be uniform, then that is a height for q as desired, with the
history of that computation as the witness. It bears observation that it suffices
to force the uniformity of B by all members of q of a fixed height, as then any
pointwise larger canonical height of q will be as desired.

All that we have to show is that the algorithm just sketched terminates.
Suppose not, toward a contradiction with q forcing B to be a bar. It would be
nice if we could force with the complement of B to generate a path missing B.
But in order to be allowed to do that, B would have to be non-uniform, and
there is no reason to think q forces B not to be uniform. That means we first
have to extend q to get B to be non-uniform, and then extend again to get the
desired path.

Returning to the algorithm from above in more detail, at stage n, consider
all µ’s of height n. Calculate each hmf∗µ , and call the pointwise maximum, also
a canonical height, hn. Without loss of generality, hn is a pointwise increasing
function of n. Go through the members ρ of q of height hn. If pρ is seen to force
B to be uniform, put ρ (and all of its extensions) into a new set we’re defining,
BU . Also any ρ of height hn not a member of q is to be put into BU . Else do
not put ρ into BU . This defines BU within MK1 . It is easy to see that BU is
decidable (as all ρ’s of height hn are decided at stage n, and each component
of hn is at least n), and upwards closed. The hypothesized non-termination of
the algorithm means exactly that BU is not uniform, in the sense that for no
height h of q is every tuple of binary sequences of height h in BU . Of course,
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the decidability, upwards closure, and non-uniformity of BU are all inMK1 , but
they carry over to Mq.

The current BU is different from the one in Case II, in that before it consisted
simply of binary strings, and here it is a tuple of binary strings. So what we ac-
tually have to do is to decompose BU into its components BU0, BU1, ..., BU(n−1),
where n is the length of q. Then we extend q via an iterated forcing with the
complements of the BUi’s. After that, the argument continues pretty much as
in the previous case. We extend again with the complement of B as interpreted
by this latter iterated forcing, what was called B� above. Finally, we get a
contradiction as above with forcing a particular member of this last generic G,
a path through T �, into B.

Theorem 22. 〈〉 
 ¬FANc.

Proof. Recall that a c-fan is based on a decidable set of C, which can be taken
to be a computable assignment of “in” and “out” to all the nodes. A node is in
the bar if it and all of its successors are assigned “in”, and out of the bar, or in
the tree, if one of its successors is “out”.

Consider the following c-fan, due to Francois Dorais. Let K be some com-
plete c.e. set, with enumeration Ks (K at stage s). We identify Ks with its
characteristic function up to s, so that Ks is a binary sequence of height s. Let
C be such that all nodes on level n are labeled “in” except for Kn, which is
labeled “out”. Since the integers in any Mp are the same as those in any Mp,
which are those of V , the set C exists in the model as a decidable set, and is the
internalization of C as defined in V . Letting χ(n) be the characteristic function
of K ∩n, χ is the unique branch missing the induced c-set B. As is well known,
χ does not exist as a path in MK1

, so B is a bar there. (Briefly, if e 
r χ
is a total function, then χ(n + 1)(n) is computable from e and so e provides a
computable solution to the halting problem.) We must, and need only, show
that B remains a bar in M, the idea being that generically χ is not added by
forcing to the model.

Work in MK1
. Suppose that p 
 P witnesses that B is not a bar, in that

P is an infinite path avoiding B. (We take P to be a term for a function
such that P (n) is a binary sequence of length n.) We want to show that p is
an inconsistent node. By the choice of C, each P (n) is (forced to be) equal to
χ(n). Let n be a natural number. Then p 
 P (n) 6∈ B; that is, p 
 ∃s ≥ n some
extension of P (n) of length s is labeled “out”; that is, p 
 ∃s ≥ n Ks extends
P (n). Unpacking the definition of forcing an existential statement, there is a
membership function m of p, and whenever m(ρ) = 1 there is a natural number
sρ such that pρ 
 Ksρ extends P (n).

We will need to leverage the fact that the halting problem has no computable
solution. So we now need to work inMK1 , where all of the above is happening.
That means there is a realizer e such that {e}(n) 
r “There is a membership
function m of p, and ∀ρ m(ρ) = 1→ ∃sρ pρ 
 Ksρ ⊇ P (n).” In particular, m is
a computable function of e and n, as is hm. Go through all tuples ρ of height
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hm, and apply m to them. If m(ρ) is never 1, then we have a witness that p is
inconsistent, and we are done. If m(ρ) is ever 1, then we can compute sρ.

If p were consistent, then so is pρ for some ρ of height hm. For any such ρ,
m(ρ) = 1 and whatever pρ forces is the truth. In particular, Ksρ really does
extend χ(n). Of course, the converse does not hold: just because m(ρ) = 1
does not mean that pρ is consistent. But what we could do is compute sρ
whenever m(ρ) = 1 and take their maximum s. Then Ks extends χ(n). If p
were consistent, we could do this for every n, and would then have a computable
solution to the halting problem. Since there is no such thing, p is inconsistent.

We are not quite done yet. We must compute a witness that p is inconsistent.
In some detail: What we want is a realizer that 〈〉 
 FANc → 0 = 1; that is, a
realizer for ∀p if p 
 FANc then p 
 0 = 1. So we need a computable procedure
that would take an e realizing p 
 FANc and return a realizer that p 
 0 = 1.
The only way that p could force 0=1 is with a membership function that never
takes on the value 1. It sure helps knowing, as we showed above, that p is
inconsistent; what we still must do is compute such a membership function. We
now give a procedure that halts with such a function whenever p is inconsistent.

Interleave the following procedures. Because Op0 is decidable, go through
all binary sequences µ, shorter before longer, and determine which are in Op0
and which are not. (Notice that in this base case, the answer in unambiguous:
there is no setting in which some µ is sometimes in and sometimes out of Op0 .)
Whenever µ is determined not to be in Op0 , then no extension of µ need be
considered, in either sense of a binary sequence ν as an end-extension of µ or
of a tuple ρ with µ (or an end-extension ν) as a 0th component. Also, when
building a membership function m, we will take m(ρ) for any ρ extending µ to
be 〈0, 0〉. Inductively, suppose we have ρ of length k < n the length of p. We will
assume that, for all i < k, pρ�i 
H ρ(i) ∈ Opi , with the following justification.
Because p � i forces T pi to be decidable and Opi as an open set to have a base,
by extending the height of the i-tuples considered enough, we will eventually be
considering ρ’s that are big enough to decide membership in Opi . If we ever find
that pρ�i 
H ρ(i) 6∈ Opi then ρ and any of its extensions will be labeled by any
m we build 〈0, i〉.

If at any time all ρ’s of a fixed height are labeled with some 〈0, j〉, then
we have a membership function witnessing the inconsistency of p. If p really is
inconsistent, then we will eventually find such a membership function, as follows.
There is a least i such that p � i 
 Opi = ⊥. For that i, p � i 
 there is a height
such that Opi contains nothing of that height. Then there is a height H of length
i and integer G such that every ρ of height H is either labeled 〈0, j〉 (j < i) or
pρ 
 Opi contains nothing of height G; in the latter case, for any µ of height G,
ρ_µ will be labeled 〈0, i〉. Notice that the procedure might never get that far.
There might well be i-tuples ρ and sequences µ such that pρ 
H µ ∈ Opi , and
so the procedure will continue with ρ_µ, even if pρ 
H Oµ = ⊥, a condition
we never checked. Then pρ_µ will force anything. In particular, we might find
ρ_µ and its extensions forcing lots of sequences out of Opk for k > i, so that we
get a desired membership function m (i.e. labeling nothing 1) with some height
allowing for ρ_µ. In a sense, this is not really what we want, since it might
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not be honest: there might be extensions of pρ_µ that we consider which force
untruths. Nonetheless, this will satisfy the definition of forcing 0=1.
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