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Abstract

We show that, in terms of both implication and consistency strength,
an extendible with a larger strong cardinal is stronger than an enhanced
supercompact, which is itself stronger than a hypercompact, which is it-
self weaker than an extendible. All of these are easily seen to be stronger
than a supercompact. We also study C"-supercompactness.
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1 Introduction

In [1] and [2] were first defined some large cardinal properties that are extensions
of supercompactness, called hypercompactness and enhanced supercompactness
respectively. Their purpose there was as hypotheses in consistency theorems. In
[8] both of those were shown to be weaker than a Vopénka cardinal in terms of
consistency strength. The original goal of this work was to weaken the Vopénka
hypothesis by showing that the existence of extendibles implies the consistency
of the existence of hypercompacts and enhanced supercompacts, or show that
extendibles are themselves hypercompact and enhanced supercompact, or both.
We also wanted to compare them to each other. We got a hypercompact to
be weaker than an extendible and weaker than an enhanced supercompact, and
we got the latter to be weaker than a strengthening of an extendible, all in
both senses of weaker (i.e. consistency and implication). We conjecture that
enhanced supercompactness is still weaker than a simple extendible. Along the
way, we also demonstrate the (quantifier) complexity of the definitions of those
cardinals.

The other strengthening of the notion of supercompactness in the literature
of which we are aware is C™-supercompactness, an example of a C™-cardinal [3].
There it was shown that measurability and C™-measurability are equivalent.



However, an important property of an ultrafilter embedding j : V — M is that
M Dbe closed under k-sequences (where k is the critical point of j); that is, if & is
measurable then x is k-supercompact. Although that fact of such embeddings is
so often used, it is not taken as part of the definition of measurability, because
it follows so easily. However, in the context of C™-cardinals, such closure does
not follow immediately, and is even false for Bagaria’s C™-measurability embed-
dings. We show that having an embedding in which M is k-closed is strictly
stronger than a simple C™-embedding, that is, that & being C*-measurable for
any natural number k& does not imply that x is k-C™-supercompact (n > 3).

2 Hypercompacts

Definition 2.1 [8] A cardinal k is a-hypercompact if for all 8 < « and for
unboundedly many X\ there is a PxA-supercompactness embedding j : V. — M
such that, in M, the cardinal k is B-hypercompact. A cardinal is hypercompact
if it is a-hypercompact for all c.

The following two basic lemmas clarify some details about the hypercom-
pactness hierarchy.

Lemma 2.2 For any pair of ordinals £ < «, if k is a-hypercompact, then k is
&-hypercompact.

Proof: The proof follows immediately from Definition 2.1. In particular, to
show that k is &-hypercompact, it must be shown that for all § < &, and for
unboundedly many A, there is a P;A-supercompactness embedding j : V — M
such that in M, k is B-hypercompact. But any such 8 is less than «, since
B < & < a. Therefore, since k is a-hypercompact, it follows immediately that
such an embedding j exists. 1

Lemma 2.3 For every limit ordinal §, the cardinal K is 0-hypercompact if and
only if k is B-hypercompact for every 5 < 4.

Proof: The forwards direction of the proof follows from Lemma 2.2. The con-
verse follows immediately from Definition 2.1: if k is S-hypercompact for every
B < &, then for every 8 < § and for every o < f (or equivalently, for every
a < §), for unboundedly many A, there is a P,A-supercompactness embedding
such that x is a-hypercompact in the target model. Hence, k is d-hypercompact.

We would like to discuss a potential alternative definition for the hypercom-
pactness hierarchy which may appear more natural to some readers, resulting
from switching the quantifier order of Definition 2.1. We will then explain why



we prefer Definition 2.1. Let us say that s is a-shmypercompact if for un-
boundedly many A there is a P, A-supercompactness embedding such that in
the model M, for all 8 < «, the cardinal x is S-shmypercompact. Clearly, for
all ordinals «, every a-shmypercompact cardinal is a-hypercompact, because
the definition of shmypercompactness is stronger, requiring the embedding j to
be chosen uniformly for all 3 < a. When m < w, it can be shown that every m-
hypercompact cardinal is m-shmypercompact, as follows. Suppose inductively
that for all n < m < w, we have shown that (in V) every n-hypercompact
cardinal is n-shmypercompact. Let x be m-hypercompact. For an arbitrary A,
let j be an embedding witnessing that & is (m — 1)-hypercompact in the target
model. By Lemma 2.2, j witnesses that s is n-hypercompact for all n < m.
Inductively, j witnesses that x is n-shmypercompact in the target model for all
n < m. Since A was arbitrary, it follows that s is m-shmypercompact in V.

When a = w, this proof breaks down: we cannot use the same argument
to show that every w-hypercompact cardinal is w-shmypercompact, because w
has no immediate predecessor. However, if k is (w + 1)-hypercompact, then the
argument works again, but with a slightly different result. For a fixed A, let j be
the P;A-embedding such that x is w-hypercompact in the target model. Then
by lemma 2.3 and the argument in the previous paragraph, this same embedding
witnesses (with respect to A) that s is w-shmypercompact. So we see that every
(w 4+ 1)-hypercompact cardinal is w-shmypercompact. Conversely, if x is w-
shmypercompact, then for a fixed A, there is a single P, embedding such that
k is n-shmypercompact (and therefore n-hypercompact) in the target model for
all natural numbers n. By Lemma 2.3, it follows that x is w-hypercompact in the
target model, and so by Lemma 2.2, it follows that k is (w + 1)-hypercompact.

We have seen now that an (w + 1)-hypercompact cardinal is equivalent to
an w-shmypercompact cardinal. We can continue the inductive argument up
through the ordinals. In general, for successor ordinals @ > w, an («a + 1)-
hypercompact cardinal is the same as an a-shmypercompact cardinal, and at
limit ordinals §, the §-hypercompact cardinals are characterized by Lemma 2.3.
This fact explains one reason why we prefer Definition 2.1 over the shmyper-
compact definition. If we instead used the shmypercompact definition, then we
would have to resort to awkward phrases such as “n-shmypercompact for all
n < w” rather than the more concise and elegant “w-hypercompact.”

Another reason to prefer Definition 2.1 is that under this definition, degrees
of hypercompactness are defined in closer analogy with the definition of the
Mitchell rank of a measurable cardinal s (see for instance [7, Definition 19.33]).

Additionally, Definition 2.1 is to be contrasted with what is called hypercom-
pactness in [1] and excessive hypercompactness in [8], which posits the existence
of embeddings for all A > k, rather than just for unboundedly many A. In fact,
no k can be (2¥)T-excessively hypercompact [8], whereas it is consistent relative
to a Vopénka cardinal that there exists a fully hypercompact cardinal [8].

We continue the analysis of hypercompact cardinals with the following the-
orem.

Theorem 2.4 x is a-hypercompact iff for all A > k + « there is a PeA-



supercompactness embedding, under which k remains B-hypercompact (B < ).

Proof: We consider only the non-trivial direction. Given 8 < a and A\ > K+«
let j : V — M be a witnessing embedding; that is, a P, pu-supercompactness em-
bedding, for some g > A, such that x is S-hypercompact in M. Let jy : V — N
be the factor embedding of j induced by the seed j”\; that is, jx is induced
by the ultrafilter ¢« on P, A such that X € U iff 77\ € j(X). Let k: N - M
elementary be such that j = k o j». By general facts about factor embeddings
(see for instance [6], Lemma 22.12) the critical point of k is greater than A,
which is greater than both x and «, and hence also 5. By elementarity, N = “k
is B-hypercompact” iff M |= “k(k) is k(3)-hypercompact.”. |

Lemma 2.5 Being hypercompact is 113 definable.

Proof: k is hypercompact iff x is 8-hypercompact for all 8. So it suffices to
show that being S-hypercompact is As.

The B-hypercompactness of x will be witnessed by a sequence HPC) C
(B4+1) x Afor A < k+1. Each HPC) will be so defined as to contain {(«, p) iff
i is a-hypercompact. So x will be S-hypercompact iff (8,k) € HPC\y1. We
need to check the definability of such an H PC-sequence.

By the previous theorem, p is a-hypercompact iff for all v < a and for all
p > i+ « there is a supercompactness embedding j induced by an ultrafilter
on P,p such that, in M, p is -hypercompact. If we define the H PC-sequence
right, then p’s y-hypercompactness will be witnessed by (v, u) € j(HPC,,).

Hence we define the H PC-sequence by:

VA< Kk+1Va<pVu<Aa,u) € HPCy + (Vy < aVp > u+a VX if
X = V, 42 then there is a normal fine ultrafilter on P,p in X inducing j such
that (v,u) € j(HPC,))].

To say that a set is an initial segment of the V-hierarchy is II;, and so the
part in parentheses is II5. The formula in brackets is a Boolean combination of
II, formulas, and so is As. The quantifiers in front are bounded, and as such
do not raise the quantifier complexity.

Finally, x is S-hypercompact iff there is an H PC-sequence as defined above
and (8,k) € HPCy41 iff for every HPC-sequence if it satisfies the definition
above then (3,x) € HPC, 1, which is Az. I

Theorem 2.6 If k is extendible then k is hypercompact.

Proof: We need to refine the notion of a-hypercompactness. Whereas a-
hypercompactness refers to P, A embeddings for (essentially) all \, y-supercompactness
refers to a single P,y embedding. Hence we say that x is v — a-hypercompact

if for all 8 < « there is a P,y embedding j : V — M such that, in M, k is
B-hypercompact.



Let x be extendible. So k is supercompact, i.e. 1-hypercompact. Assume
inductively k is B-hypercompact for § < a. We would like to get k to be v — a-
hypercompact, for any fixed v > kK + a. Let n > v be such that V;, <x, V.
Let j : Vy4w — Veyw be given by the extendibility of k. As explained to us
by Joel Hamkins [5], 7 can be extended to an elementary embedding from V
to M, which we will also call j. (Briefly, each « € V¢, induces an ultrafilter
back in V4., which induces an embedding from all of V. Those ultrafilters
taken together form an extender, and the desired j : V' — M is the extender
embedding.)

By hypothesis, k is S-hypercompact in V (8 < «). We claim that by a
careful examination of the definition of S-hypercompactness from the previous
lemma one can see that V¢ |= “k is f-hypercompact.” In some detail, notice that
the definition of (o, u) € HPC) begins (after the bounded quantifier) with a
universally quantified p. When interpreted in V¢ instead of V/, this much is even
easier to satisfy, as there are fewer p’s to consider, so if anything (HPC, )¢ will
be a superset of HPCy. The next part of the definition is about initial segments
of V' (namely V,12). There is agreement between V' and V) on what’s an initial
segment of V. The final part of the definition is whether (y,u) € j(HPC),).
This is a positive assertion (that is, in the scope of no negations), and so if
true in V' then true in V;. To be more formal about it, we would show that
HPC, C (HPCy)"¢, inductively on A\. Assuming that this is true for all g < A,
if (o, u) € HPC), then for all relevant p (i.e. between p+ « and ¢) there is a j
in V, and hence also in V¢, such that (v, u) € j(HPC),), and hence (inductively)
also a member of j(H PC’XC). In V; therefore (a, p) also satisfies the definition
of being in HPC).

Now we use the specific choice of 7. Since V;, <x, V and ¢ = j(n), by
elementarity V: <y, M. By the definability of A-hypercompactness, & is /-
hypercompact in M. Now take a P,y factor embedding jy of j, with k :
My — M elementary and j = ko jy. As is standard, k(k) = k and k(8) = 5,
and so by elementarity s is S-hypercompact in My. This shows the v — a-
hypercompactness of k. This works for all sufficiently large v, so k is a-
hypercompact. I

Theorem 2.7 FExtendibility has a greater consistency strength than hypercom-
pactness. In particular, if k is extendible, then for all limit X\ > k, V) |E “k is
hypercompact”.

Proof: By the previous theorem, k is hypercompact, and as argued in the pre-
vious proof, that fact reflects down to all initial segments of V. Moreover, if
there in an extendible, then there are unboundedly many inaccessibles. To see
this, let n € ORD be arbitrary, and j : Vi.1,, = Vi be elementary with j(k) > n.
Since Vj.1, = “k is inaccessible,” V) = “j(k) is inaccessible.” Inaccessibility is
absolute between V' and its initial segments. So there are unboundedly many
inaccessibles, and hence unboundedly many models of ZFC. |



In fact, by using this reflection property of hypercompactness, we can im-
prove an earlier result.

Proposition 2.8 Being hypercompact is s definable and not Yo definable.

Proof: The II3 definition of hypercompactness given earlier used the correct
HPC-sequence. As argued above, if the definition of the H PC-sequence were
interpreted in an initial segment of V', any mistake it might make would be in
being too liberal, and evaluating as S-hypercompact ordinals that really weren’t,
not the other way around. So in fact  is S-hypercompact if for all p and X (if
X is an initial segment of V large enough to evaluate the transitive collapses
of sufficiently large initial segments of the images of elementary embeddings
given by normal fine ultrafilters on P, p, and if HPC) is the H PC-sequence as
interpreted in X, then (3,x) € HPC\1).

If hypercompactness were ¥, then the existence of a hypercompact is also
Yo, and so if there were one in V there would be one in V,;, where « is the least
supercompact, because V, <5, V (see [6], Prop. 22.3). This clearly cannot
happen, as hypercompacts are supercompact.

3 Enhanced Supercompacts

Definition 3.1 [2/ A cardinal k is enhanced supercompact if it is supercom-
pact, and there is a 6 > Kk which is strong, and for all X > 0 there is a
A-supercompactness embedding j : V. — M for k such that, in M,0 remains
strong.

Proposition 3.2 Being enhanced supercompact is X3 definable and not 113 de-
finable.

Proof: Direct from the definition,  is enhanced supercompact if 30(6 > k A K
is supercompact A 6 isstrong A VA > 6 (35 :V — M jis a A-supercompactness
embedding for k and M |= “0 is strong”)). As is standard, being supercompact
and being strong are Iy ([6], p. 302 and 360). The formula in parentheses can
be written as “V.X if X = V);5 then there is a normal ultrafilter U in X such
that {z € P\ | Vo | “o.t.(xN0) is strong”} € U.”

Suppose ¢(x) were II3 and provably equivalent to = being enhanced su-
percompact. Let x be enhanced supercompact. Then ¢(x) holds in V', and
moreover reflects down to any Yo substructure of V' that includes k. Let A be
the least ordinal greater than  such that V) <x, V. Then V) = “k is enhanced
supercompact.” Hence V) |= “there is a strong cardinal 6 greater than x.” That
means that V\ E “Vp <5, V,” so Vy <5, Vi, and Vy <5, V, contradicting the
choice of A. I



Theorem 3.3 If k is extendible and 0 > &k is strong then k is enhanced super-
compact.

Proof: Recall from Theorem 2.7 that if k is extendible then the inaccessibles
are cofinal in ORD. So letting 8 > 6 be inaccessible, it suffices to show that
Vs |= “k is enhanced supercompact, with witnessing strong 6.”

Let j : Vg — V) be a S-extendibility embedding for k. For a between 6 and
B, let k be the a-supercompactness factor embedding of j from V3 to M, with ¢
the elementary embedding from M to V) such that j = iok. It suffices to show
that 6 is strong in M.

If 6 were not strong in M, then () would not be strong in V). The critical
point of i is greater than «, so i(f) = 6. But being a strong cardinal is witnessed
by the existence of an extender for each ordinal, and so reflects from V to V).
Hence 6 is strong in Vy. |

Theorem 3.4 If k is extendible and 0 > k is strong then V, |= “There is an
enhanced supercompact.”

Proof: By the preceding theorem, k itself is enhanced supercompact. The ex-
istence of enhanced supercompacts is 3. By the Y3-elementarity of extendibles
([6] Prop. 23.10), since there is an enhanced supercompact in V' there is one in
V.. 1

So enhanced supercompactness is strictly weaker both implicationally and
in consistency than an extendible with a larger strong. Is this larger strong
cardinal necessary?

Conjecture 3.5 Enhanced supercompactness is strictly weaker both implica-
tionally and in consistency than extendibility.

That the preceding theorems do not already prove this conjecture is the
purpose of the following.

Proposition 3.6 If k is extendible and 0 > k is strong then Vy “K 1S ex-
tendible.”

Proof: The property of being extendible is II3 definable ([6], p. 318). Strong
cardinals provide Ys-elementary substructures of V', and it’s easy to see that
I3 statements reflect down to Ya-elementary substructures. |

Now we want to compare enhanced supercompactness with hypercompact-
ness, from the previous section.



Theorem 3.7 Enhanced supercompactness has a greater consistency strength
than hypercompactness. In particular, if k is enhanced supercompact, as wit-
nessed by a strong 0 > K, then Vy |= “k is hypercompact”.

Proof: Suppose « is enhanced supercompact, as witnessed by a strong 6 > k.
Let 8 be less than 6. Assume inductively that for all @ < 3, k is a-hypercompact.
By the strongness of 8, we have that Vy <5, V, and it follows directly that As
properties persist between Vy and V. So, in Vjy, k is a-hypercompact.

By k’s enhanced supercompactness, for A > 6, let j : V — M be a A
supercompactness embedding (critical point &, j(k) > A) with 6 strong in M.
Since My = Vy, My | “k is a-hypercompact.” By Aj elementarity, M = “k is
a-hypercompact.” So j witnesses that (in V') x is S-hypercompact.

By induction, for all § < 6, k is S-hypercompact. Hence Vy &= “k is hyper-
compact.” |

Theorem 3.8 If k is enhanced supercompact then k is hypercompact.

Proof: Let 6 > k be the strong cardinal witnessing enhanced supercompactness.
Let A > 0,Vy <5, V, and j : V — M be a A-strongness embedding for 6.
As shown during the proof of the previous theorem, V = “V8 < 6 (k is §-
hypercompact).” By elementarity, M |= “Vj3 < j(0) (k is S-hypercompact).” In
particular, M = “V8 < A (k is S-hypercompact).”

We claim that M), = “VB (k is S-hypercompact).” Choose 8 < A. The
witness to ’s S-hypercompactness in My, if any, would be an H PC-sequence
as defined in the previous section. The defining characteristic of some pair
(a, u) being in some HPC, is II; more than that, the existential quantifier
in this II; definition is just to verify that a set is an initial segment of the V-
hierarchy, and so reflects from M to M) whenever X is a limit ordinal. Hence
HPC, C HPC,]YWA, which suffices.

Since My = V), Vi E “V8 (k is B-hypercompact).” By the choice of A, & is
hypercompact. I

4 (C"-supercompacts

In [3], Bagaria gives a meta-definition of a C™-large cardinal, where C™ is the
proper class of ordinals A such that Vy <y, V.! If X is a large cardinal notion
based on elementary embeddings, then x is said to be C"-X if there is an
elementary embedding j as given by X, with critical point &, and j(x) € C™.
Note that this is C™ as interpreted in V', even though the object j(x) leads one
to think of M. For instance:

1Bagaria actually uses the notation C(™) . We feel that C™ is a cleaner notation and are
advocating the use of this cleaner notation.



Definition 4.1 [3]/ A cardinal k is C™-measurable if there is an elementary
embedding j with critical point k such that j(k) € C™. Similarly, x is C"-
supercompact if for all A there is a A-supercompactness embedding j for k with
j(k) e C™.

It is often observed that k is measurable iff k is k-supercompact. This is
no longer obvious in the current context of C"-cardinals, and as we will see
not even true. What’s up for grabs is whether the target model is closed under
r-sequences. While this is easily seen to be the case under an ultrafilter-induced
embedding, in Bagaria’s proof that measurability and C"*-measurability coincide
he iterates that embedding, and it is easily seen that k-closure does not persist
past limit stages (by considering the w-sequence &, j(k),j(j(K)),...).

The argument below revolves around a very similar notion, tallness:

Definition 4.2 A cardinal & is tall if for all 6 there is an elementary embedding
J: V.= M with critical point k, j(k) > 0, and "M C M. Similarly, k is C"-tall
if for all 0 there is an elementary embedding j : V. — M with critical point s,
Jj(k)>0,"M C M, and k € C™.

Note that if & is tall then x is k-supercompact, and if x is C"™-tall then x is
k-C™-supercompact. For an overview and background of results around tallness,
see [4]; for other work on C"-tallness, see [9)].

Lemma 4.3 If s is k-C™2-supercompact then k is C™-tall.

Proof: Asin [3], if there is such a supercompactness embedding then one such
can be given by an extender. Suppose that x were not C"-tall, that is, the 6’s
for which there is a C"-0-tallness embedding were bounded. Hence 30 VE if E
is an extender on x then either jg(k) < 6 or jg(k) € C™ or "M ¢ M. That
statement is 3,12, as the only part of it of any quantifier complexity (beyond
the explicit quantifiers at the beginning) is the A,y definition of C™. Because
of that quantifier complexity, it is true in V},, where y is the smallest member
of C"*2 greater than x. Moreover, the witness 6 in V,, is also (by elementarity)
a witness in V. But taking j to be a k-C™T2-supercompactness embedding,
j(k) > p (because j(k) € C"*2,j(k) > k, and p is the least such ordinal), and
1 > 0. The existence of j contradicts the definition of 8, and so shows that k is
Cm-tall. 1

Corollary 4.4 x is C™-tall for all n iff k is k-C™- supercompact for all n.

Theorem 4.5 There is no natural number k such that ZFC proves “if x is
C*-measurable then k is k-C®-supercompact.”

Proof: Measurability implies C*-measurability for all k [3]. If x is x-C3-
supercompact then by Lemma 4.3 £ would be C'-tall, and hence tall. So if



this theorem were false, then measurability would imply tallness, which it does
not [4]. 1

Corollary 4.6 below follows immediately. Although weaker than Theorem
4.5, its statement is more elegant.

Corollary 4.6 There is no natural number k > 3 such that ZFC proves “if
is C*-measurable then k is k-C*-supercompact.”

5 Questions and Conjectures

Question 5.1 What other large cardinals are known or suspected to lie between
supercompacts and extendibles, and how are they related to one another and to
hypercompacts and enhanced supercompacts?

To repeat our earlier conjecture about enhanced supercompactness:

Conjecture 5.2 Enhanced supercompactness is strictly weaker both implica-
tionally and in consistency than extendibility.

Regarding C"™-supercompactness, we can refer the reader to many questions
about this in [3]. The one we find most intriguing is to get a consistency theorem
for C™-supercompactness relative to a standard large cardinal. Bagaria [3] was
able to do this using an Fjy-cardinal, also known as an [I3-cardinal, which is
a very large upper bound. Later, Tsaprounis [9, Theorem 2.21] reduced this
upper bound to an almost huge. Is there a good equiconsistency result? We
think not. The C"-large cardinals seem to have their own nature.

Conjecture 5.3 The existence of a C™-supercompact does not imply the con-
sistency of an extendible, nor does the existence of an extendible imply the con-
sistency of a C™-supercompact.

The following additional open question about C* cardinals asks whether the
result of Theorem 4.5 is optimal. (This question is actually two questions, one
for each value of n.)

Question 5.4 Letn = 1 orn = 2. Does there exist a natural number k such
that, provably in ZFC, for all k, if k is C*-measurable then k is k-C™-supercompact?

In the case n = 0, the answer is trivially yes, because V,, is ¥p-elementary
in V for all ordinals a.. If x is C*¥-measurable, it follows that x is measurable in
the ordinary sense, and any elementary embedding by a normal measure on &
witnesses that & is k-C°-supercompact.
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