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Abstract

Kripke’s schema with parameters turns out to be equivalent to each
of the following two statements from metric topology: every open sub-
space of a separable metric space is separable; every open subset of
a separable metric space is a countable union of open balls. Thus
Kripke’s schema serves as a point of reference for classifying theo-
rems of classical mathematics within Bishop-style constructive reverse
mathematics.

In this paper we show that a certain version of Kripke’s schema with pa-
rameters is equivalent to either of the following two statements from metric
topology: every open subspace of a separable metric space is separable; every
open subset of a separable metric space is a countable union of open balls. By
so doing we use Kripke’s schema as a point of reference for classifying theo-
rems of classical mathematics within the informal variant of the constructive
reverse mathematics programme put forward by Ishihara [7, 8].! As for the
latter, the overall framework of the present note is Bishop-style constructive
mathematics [1, 2, 3, 4, 10], which can be thought of as mathematics carried
out with intuitionistic logic [11].

The Kripke Schema can be stated as follows [3]:

For each proposition P there is an increasing binary sequence
(a,) such that P holds if and only if a, =1 for some n.

Clearly the Kripke schema follows from the law of excluded middle: set a,, =
1 (respectively, a, = 0) for every n whenever P (respectively, —P) holds.

'For more references and other authors on constructive reverse mathematics see [9].



However, Kripke’s schema was intended to capture the essence of Brouwer’s
creating subject, an idealised mathematician (IM) living forever in discrete
time. One can tell whether at time n the IM has already proved a proposition
P, whence one can define the increasing binary sequence (a,,) by setting a,, =
1 precisely when the IM has proved P at time n or before. Brouwer conceived
the creating subject in order to refute Markov’s principle within intuitionistic
mathematics. Indeed, in the presence of Kripke’s schema, Markov’s principle
implies the law of excluded middle.

A subset Y detachable from a set X if for each x € X either z € Y or
x &Y. Aset S is countable [10] if there is a surjective mapping D — S
from a detachable subset D of N onto S. Note that a detachable subset of a
countable set is countable.

With this notion of a countable set, which includes the empty set, a
parametrised version of Kripke’s schema [13] can be stated as follows [12]:

KS, Fvery subset of N is countable.

In fact a subset S of N is countable precisely when it is simply existential:
that is, S = m; (E) for a detachable subset E of N x N; where m; denotes
the first projection. We refer to [12] for more on Kripke’s schema including
further references.

A set X is discrete if for every pair z,y € X either x = y or = # .
Clearly, every subset of a discrete set is discrete as well. We say that a
subset Y of a set X is proper if there is x € X with = ¢ Y. The equivalence
of KS,, with item 1 of the following lemma has been observed in [12].

Lemma 1 FEach of the following items is equivalent to KS,,:

1. Fvery subset of a countable set is countable.
2. FEvery subset of a discrete countable set is countable.
3. FEvery proper subset of a countable set is countable.

4. FEvery proper subset of a discrete countable set is countable.

A metric space is separable if it has a countable dense subset. As an easy
exercise in metric topology, the proof of the next lemma is left to the reader;
for the first part see, for example, the proof of [6, VIII 7.2 (2)].



Lemma 2 Let A be an open subset of a metric space X.

1. If S is a dense subset of X, then SN A is dense in A.

2. If T is a dense subset of A, then for each a € A there aret € T and
r e QF with
a€ B, (t)CA

On a discrete set X one can define the usual discrete metric. Recall that,
with this metric on X, if B, (a) is the open ball B, (a) with center a € X
and radius 7 > 0, then B, (a) = {a} if r <1, and B, (a) = X if r > 1. In
particular, if an open ball is a proper subset, then it is a singleton.

Lemma 3 Let X be a discrete set with the discrete metric.

1. A subset of X is countable if and only if it is separable.

2. A proper subset of X is countable if and only if it is a countable union
of open balls.

Lemma 4 KS,, is equivalent to the statement

(%) Every open, separable subset of a metric space is a countable union of
open balls with rational radi.

Proof. Let T be a countable dense subset of the open subset A of a metric
space X. Note first that

B={B,(t):reQ", teT}

is a countable set, as it is indexed by the countable set Q x T'. Suppose
KS,, true. Then the subset

Bi={BeB:BC A}

of B is countable, and by Lemma 2 we have A = |J B4.

Conversely, let S be a subset of N and consider the subset A of QQ, with
the usual metric, consisting of SU (Q \ N). As Q\ N is dense, the subset A
is separable. As each element s € S is contained in the ball By (s), which



is totally contained in A, the subset A is open. If A is a countable union of
open balls with rational radii, then S is countable. m

At the end of the proof, no appeal to countable choice is required: if
B is an open ball with rational radius that is contained in A, then BN S is
finite. Compare condition (x) in Lemma 4 to its special case “every separable
metric space is a countable union of open balls”, which is provable without
KS,, along the lines of the foregoing proof. Also, (*) trivially holds for discrete
sets with the discrete metric.

Proposition 5 FEach of the following statements is equivalent to KS,,:

1. FEvery open subspace of a separable metric space is separable.

2. FEvery open subset of a separable metric space is a countable union of
open balls.

Proof. We think of KS,, as characterised in Lemma 1. In particular KS,
is nothing but statement 1 applied to the discrete metric on any discrete
set. Conversely, the general form of statement 1 follows from KS,, in view of
Lemma 2. To see that KS,, implies statement 2, we also use it in the form of
statement 1, and apply Lemma 4. By Lemma 3, KS,, follows from statement
2.m

Note that in computable analysis [14] an open subset of a (separable) metric
space can be characterised as a countable union of open balls.
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