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Useful for ordinal analysis
Iteration and hyper-iteration/feedback

� Turing jump �→ hyperarithmetic sets

� Inductive definitions �→ the µ−calculus

� ITTMs �→ ???
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(Hamkins & Lewis) An Infinite time Turing machine is a regular
Turing machine with limit stages.
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First Definitions

(Hamkins & Lewis) An Infinite time Turing machine is a regular
Turing machine with limit stages. At a limit stage:

� the machine is in a dedicated state

� the head is on the 0th cell

� the content of a cell is limsup of the previous contents (i.e. 0
if eventually 0, 1 if eventually 1, 1 if cofinally alternating)
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Writable reals and ordinals

Definition
R ⊆ ω is writable
if its characteristic function is on the output tape at the end of a
halting computation.
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Definition
R ⊆ ω is writable
if its characteristic function is on the output tape at the end of a
halting computation.

An ordinal α is writable
if some real coding α (via some standard representation) is
writable.

λ := sup {α | α is writable}
Proposition

R ⊆ ω is writable iff R ∈ Lλ.
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Eventually writable reals and ordinals

Definition
R ⊆ ω is eventually writable
if its characteristic function is on the output tape, never to change,
of a computation.

An ordinal α is eventually writable
if some real coding α (via some standard representation) is
eventually writable.

ζ := sup {α | α is eventually writable}
Proposition

R ⊆ ω is eventually writable iff R ∈ Lζ .
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Accidentally writable reals and ordinals

Definition
R ⊆ ω is accidentally writable
if its characteristic function is on the output tape at any time
during a computation.

An ordinal α is accidentally writable
if some real coding α (via some standard representation) is
accidentally writable.

Σ := sup {α | α is accidentally writable}
Proposition

R ⊆ ω is accidentally writable iff R ∈ LΣ.
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Summary and conclusions

λ is the supremum of the writables.
ζ is the supremum of the eventually writables.
Σ is the supremum of the accidentally writables.
Clearly, λ ≤ ζ ≤ Σ.
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Summary and conclusions

λ is the supremum of the writables.
ζ is the supremum of the eventually writables.
Σ is the supremum of the accidentally writables.
Clearly, λ ≤ ζ ≤ Σ.

Theorem
(Welch) ζ is the least ordinal α such that Lα has a Σ2-elementary
extension. (ζ is the least Σ2-extendible ordinal.) The ordinal of
that extension is Σ. Lλ is the least Σ1-elementary substructure of
Lζ .
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Time to iterate

Definition
0� = {(e, x)|φe (x) ↓ }
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Option II
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Time to iterate

Definition
0� = {(e, x)|φe (x) ↓ }
Proposition

The definitions of λ, ζ, and Σ relativize (to λ�, ζ�, and Σ�) to
computations from 0�. Furthermore, ζ� is the least Σ2-extendible
limit of Σ2-extendibles, the ordinal of its Σ2 extension is Σ�, and
λ� is the ordinal of its least Σ1-elementary substructure.
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Time to iterate

ITTMs with arbitrary iteration:
A computation may ask a convergence question about another
computation. This can be considered calling a sub-computation.
That sub-computation might do the same. This can continue,
generating a tree of sub-computations. Eventually, perhaps, a
computation is run which calls no sub-computation. This either
converges or diverges. That answer is returned to its calling
computation, which then continues.
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One can naturally define the course of a computation if and only if
the tree of sub-computations is well-founded. How is this to be
dealt with?

Robert S. Lubarsky Florida Atlantic University Well-Founded Iterations of Infinite Time Turing Machines



Applications
Background

Iterations

Option I
Option II
Option III

Option I

When the main computation makes a sub-call, the call must be
made with an ordinal. When a sub-call makes a sub-call itself, that
must be done with a smaller ordinal. The definitions of λ, ζ, and Σ
relativize (to λit�, ζ it�, and Σit�).
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Results

Definition
β is 0- (or 1-) extendible if its Σ2-extendible.
β is (α+1)-extendible if its a Σ2-extendible limit of α-extendibles.
β is κ-extendible if its a Σ2-extendible limit of α-extendibles for
each α < κ.
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Results

Definition
β is 0- (or 1-) extendible if its Σ2-extendible.
β is (α+1)-extendible if its a Σ2-extendible limit of α-extendibles.
β is κ-extendible if its a Σ2-extendible limit of α-extendibles for
each α < κ.

Proposition

ζ it� is the least κ which is κ-extendible, Σit� is its Σ2 extension,
and λit� its least Σ1 substructure.
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Option II

Allow all possible sub-computation calls, even if the tree of
sub-computations is ill-founded, and consider only those for which
the tree of sub-computations just so happens to be well-founded.
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Option I
Option II
Option III

Option II

Allow all possible sub-computation calls, even if the tree of
sub-computations is ill-founded, and consider only those for which
the tree of sub-computations just so happens to be well-founded.
So some legal computations have an undefined result. Still, among
those with a defined result, some computations are halting, and
some divergent computations have a stable output.
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Results

BIG FACT
If a real is eventually writable in this fashion,
then it’s writable.
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Option I
Option II
Option III

Results

BIG FACT
If a real is eventually writable in this fashion,
then it’s writable.
Proof.
Given e, run the computation of φe . Keep asking “if I continue
running this computation until cell 0 changes, is that computation
convergent or divergent?” Eventually you will get “divergent” as
your answer. Then go on to cell 1, then cell 2, etc. After going
through all the natural numbers, you know the real on your output
tape is the eventually writable real you want. So halt.
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Option I
Option II
Option III

Results

BIG FACT
If a real is eventually writable in this fashion,
then it’s writable.

SECOND BIG FACT
If a real is accidentally writable in this
fashion, then it’s writable.
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Option I
Option II
Option III

Results

QUESTION
Why isn’t this a contradiction? Why can’t you diagonalize?
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Option I
Option II
Option III

Results

QUESTION
Why isn’t this a contradiction? Why can’t you diagonalize?
ANSWER
You can’t run a universal machine.
As soon as a machine with code for a universal machine makes an
ill-founded sub-computation call, it freezes.
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Option II
Option III

Prospects

Definition
R is freezingly writable if R appears anytime during such a
computation, even if that computation later freezes.
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Option II
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Prospects

Definition
R is freezingly writable if R appears anytime during such a
computation, even if that computation later freezes.

Claim In order to understand the writable reals in this context, one
needs to understand the freezingly writable reals. One also needs to
understand the tree of sub-computations for freezing computations.
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Prospects

Notation Let Λ be the supremum of the ordinals so writable (i.e.
with well-founded oracle calls).
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c) the total number of nodes is bounded beneath Λ.
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Prospects

Notation Let Λ be the supremum of the ordinals so writable (i.e.
with well-founded oracle calls).
Then in the sub-computation tree of a freezing computation either:
a) some node has more than Λ-many children, or
b) every level has size less than Λ, but those sizes are cofinal in Λ,
or
c) the total number of nodes is bounded beneath Λ.

Proposition

Options a) and b) are incompatible: there cannot be one tree of
sub-computations with more than Λ-much splitting beneath a node
and another with the splittings beneath all the nodes cofinal in Λ.
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Yet another option: parallel computation:
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Yet another option: parallel computation:
An oracle call may be the question “does one of these
computations converge?” The computation asked about has an
index e, parameter x , and free variable n.
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Option III

Yet another option: parallel computation:
An oracle call may be the question “does one of these
computations converge?” The computation asked about has an
index e, parameter x , and free variable n. If one (natural number)
value for n yields a convergent computation, the answer is “yes”,
even if other values yield freezing computations. The answer “yes”
means some natural number yields a convergent computation, even
if other numbers yield freezing. The answer “no” means all
parameter values yield non-freezing computations and all are
divergent.

Robert S. Lubarsky Florida Atlantic University Well-Founded Iterations of Infinite Time Turing Machines



Applications
Background

Iterations

Option I
Option II
Option III

Option III

Yet another option: parallel computation:
An oracle call may be the question “does one of these
computations converge?” The computation asked about has an
index e, parameter x , and free variable n. If one (natural number)
value for n yields a convergent computation, the answer is “yes”,
even if other values yield freezing computations. The answer “yes”
means some natural number yields a convergent computation, even
if other numbers yield freezing. The answer “no” means all
parameter values yield non-freezing computations and all are
divergent. (Notice this is the same question as “does one of these
computations diverge?”, since divergence and convergence can be
interchanged.)
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Option III

Yet another option: parallel computation:
An oracle call may be the question “does one of these
computations converge?” The computation asked about has an
index e, parameter x , and free variable n. If one (natural number)
value for n yields a convergent computation, the answer is “yes”,
even if other values yield freezing computations. The answer “yes”
means some natural number yields a convergent computation, even
if other numbers yield freezing. The answer “no” means all
parameter values yield non-freezing computations and all are
divergent. (Notice this is the same question as “does one of these
computations diverge?”, since divergence and convergence can be
interchanged.)
to be continued ...
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