Intuitionistic 1L

Robert S. Lubarsky
Dept. of Mathematics
Franklin and Marshall College
Lancaster, PA 17604-3003
(717) 291-3872, r_lubarsky@fandm.bitnet

Introduction

The goal of this paper is to develop the basics of IL, that is, L. under intuitionistic
reasoning. The highlights are that (under IZF) IL is a model of V=L and also of IZF. While
these are not exciting results classically, they and their associated lemmas are examples of
the phenomenon that classical trivialities can become sticky intuitionistically, when they're

not downright false.

By way of some general background, IZF is ZF set theory with intuitionistic logic in place
of classical logic. As is often the case, one must take care what exactly ZF is taken to be,
since classically equivalent statements can become inequivalent in a constructive setting. In
the case at hand, Foundation, as the axiom that every non-empty set has an e -minimal
member, implies Excluded Middle, so is replaced by the schema of € -Induction:

Vy [(Vxey ¢x)) = ¢y)] = VX o(x) .
For a discussion of Infinity, see the section on Iw below. The only other problematic part
of ZF is that, in the presence of the other ZF axioms, Replacement, Collection (aka
Bounding), and Reflection are equivalent classically, but the proof of such breaks down
intuitionistically. Hence there are three corresponding flavors of intuitionistic ZF: IZFReps
IZF, and IZFRef. It is easy to see that [ZFges implies IZF, which itself implies [ZFgep.
That IZFRep does not imply IZF was first proven in [FS], where it is shown that IZF does
not have the existence property, in contrast with IZFref. An alternative proof is given in
[Li] éﬁi’iﬁjﬁ, which contains a Kripke model of 1ZFRep + —IZF. It is unknown whether
IZF implies IZFRes. (These issues also spill over into the Axiom of Separation (aka
Comprehension), which is considered classically to be a corollary of Replacement, but

intuitionistically is posited separately.)

While any discussion of IL logically needs some of the sections that follow, it should cause
no confusion to mention here that IZFRer easily proves that IL models IZFRey. It is one of




our goals to show that under IZF IL models IZF. It is unknown whether [ZFR¢p proves

that IL models the same.

The problem showing (V=L)! is that the ordinals are not absolute; hence, for IL =

U 4e orD ILq, it is not clear that IL = U ge (OrD)IL Ig. The problem showing that
(IZF)IL is not in showing that Collection holds in IL, which is actually trivial. The trouble
is Separation (aka Comprehension), which seems to call for some kind of Reflection. The
trouble trying to prove Reflection in IZF, which is the same roadblock in trying to prove
Collection in IZFRep, is that the ordinals are not linearly ordered.

Regarding the meta-theory, it would be nice always to work within as weak a theory as
possible, to produce the strongest results. For instance, HA should be enough to do all the
syntax we need, and the basics of IL should need only IKP, whatever that may turn out to
be. However, the question of just what's needed where is a bit removed from our present
purposes, and would complicate matters unnecessarily. We will compromise by working
within IZFRep, until the proof of (IZF)IL, which clearly needs to be done in IZF.

Of course, to work within IZFrep, we need IL to be a definable subclass. This depends
primarily upon internalizing definability within IZFRep, which in turn relies upon the
coding of syntax. This latter operation is usually done by using the integers to represent
symbols, terms, formulas, and such like, in such a manner that the normal syntactic
operations become recursive (even primitive recursive) functions. However, it is unclear
that the intuitionistic integers can support such a burden. So we begin this paper by
developing Im. Then we examine definability, with an eye toward keeping the witnesses to
“Y =def(X)” (i.e. “Y is the collection of definable subsets of X) easily constructible from
X. This is then applied to the L-hierarchy itself, and finally the two main theorems are

proven.

(]

The Axiom of Infinity is usually taken to be 3Ix (Jyex & Vyex dzexyez). From
this, one uses € -Induction, Power, and Separation to define the least set containing 0 and
closed under successor, called (reasonably enough) w. (See [P] for details.) However,
find it unsatisfying, philosophically and mathematically, to have o depend on any strong
set-theoretic axiom, much less three of them, especially when there is a natural alternative.

The Axiom of Infinity could just as well be taken to be:




Ix [0ex & Vyex3Jzex (z=y U {y})
& Vyex (y=0vIzex(y=z u{z}))].
(In what follows, we will use “x+1"" as an abbreviation for “x U {x}”.) Using e -

Induction, it is easy to show that the set posited by the latter Axiom of Infinity is equal to
the set constructed by the former. So choose the version of the axiom you prefer, and get

on with matters.

Our next needs are that ® models HA (more accurately, that it can be expanded to a model
of HA, by suitably defining +, *, etc.), and that HA proves all the facts we’ll use about
syntax. This is folklore, but since it is not readily accessible in print it might help
somebody to include a short discussion of these matters here.

To begin with, let’s make clear the strong inductive. properties which o enjoys.
proposition (w-Induction) For any ¢, if ¢(0) and O(x) = @(x+1), then Vxe @ ¢(x).
proof By e-Induction applied to the formula “xe @ — o(x)”, it suffices to show:

Vy [(Vxey xem = 0(x)) = (yew® — ¢(y)) |.
So assume (Vxey xew — ¢(x)) (IH) and ye ® ; we must show ¢(y) . Since ye o,
either y=0 or 3ze @ y =z+1. In the former case ¢(y), by the hypotheses on ¢. In the
latter, by IH on z, @(z), and again by the hypotheses on ¢ @(z+1), i.e. ¢(y).

proposition (Definition by Primitive Recursion) Suppose f(x ) and g(y, z, x ) are total
functions (where x is an n-tuple of variables rangin g over o, and y and z range over ).

There is a unique function h such that:
h(0, x) =f(x) and h(x+1,x) = g(x, h(x, x ), x).
proof Easy, using w-Induction.

The standard +, *, and < can now be defined on , producing a structure henceforth
referred to as N. N is easily seen to be a model of HA. Some easy corollaries are:

1) =is decidable on N; what’s more, < is a linear order.

2) N supports basic syntax. We will freely talk about formulas, their structure, basic
manipulations on them, and such like, and assume that our informal discussion could be
formalized within the language of set theory and interpreted correctly within any set
(containing N).

3) If @ (in the language of arithmetic) has only bounded quantifiers, then

Ni=Vx (p(x) v =@(x)). Notice that this corollary could be considered a single theorem

of IZFRep, by 2) above.




Definability

If X is a set, then each subset of X definable over X is also a set (by Separation). In order
to claim, though, that the collection of all such subsets of X is a set, we need that the
property of being a definable subset of X is itself definable. This can be done in a rather
straightforward, hands-on manner. A witness that Y is a definable subset of X is a
definition @(x) (Remember that Godel coding is implicitly assumed wherever necessary.),
which may have parameters from X, and a witness that Y = {xe XI| XI=0¢(x) }. The
latter witness is basically (a superset of) the set of sub-formulas of @, with parameters, that
are true in X: in other words, the witness is an inductively defined truth function on the

sub-formulas of ¢ that tells us that Y is the set in question. The purpose of this section is to

spell out this construction in more detail.

It is easy to see that the set of finite functions from the variables in the language to X, called
VAR -> X, is a set. For each n € o there will be a truth set Try for formulas of Godel code
< n, which will be a subset of n x (VAR ->X). Try will be a truth set in that X I= ¢ [f]
iff <@, £> € Try. (Implicity, if <@, f> € Try then the free variables of @ are in the domain
of £.) Clearly, Trq is the empty set. Given Try, Trps1 depends on the form of the nth
formula:
If on = "xj€ xj",
then Trpe1 = Trp U { <n, £> 1 f(x)) € f(x) }.
If on = "xi=xj",
then Trp41 = Trp U { <n, £> 1 {(x) = f(x) }.

If on = 9 &,

then Trpyq = Trp U { <n, £> 1<, > € Try & <y, f> € Try }.
If ¢n = @V,

then Trpyq = Trpu { <n, > 1 <@, > € Try v <y, > € Try .
If ¢n = 9=,

then Trpy1 = Try U { <n, £> 1 <o, £> € Try = <y, f>¢e Try |
If oy = —0,

then Tryeq = Trp W { <n, £>1 ﬂ%f(p, f>e Try) }.
If @on = Vxi @(xj),

then Trpg1 = TrpU { <n, £> 1V x € X, <@, flxi/x|> € Try}.
If on = 3x; 9(x),

then Trpyp = Trp U { <n, > 13 x € X, <@, f[xi/x]> € Try}.




But not only is each Try, a set, they are so uniformly definable that the set of Trys is also a
set, by replacement. Let Tr = U ¢ Try. Then Y is a definable subset of X iff there is a

formula @(xg, x1, ... , Xk) and a function f: {xq, ..., Xk} -> X such that Y = {x € X|
<@, f U {<xq, x>}> € Tr}. Also, Z =def(X) iff VY (Y € Ziff Y is a definable subset
of X) iff (to keep the quantifiers more bounded) VY € Z ¢ € ® I parameters from X
(Y is defined over X via @) & V@ e @ V parameters from X Y € Z (Y is defined over
X via @).

IL
Now that we know what definability is, we can talk intelligently about L.

definition Lo = Up<q def(Lp).
L=U aeORD Lo

We must show that each L is a set. This hinges upon the uniform definability of def(L)
as a function of o The canonical witness that "X = def(L)" is a pair of canonical
witnesses 'Y = Lg" and "X =def(Y)". "Y = Lg" is witnessed canonically by the pair of
functions f((3) = def(Lg) and g(B) = the canonical witness to “f(B) = def(Lp)”, with
domains o, which exist by replacement and induction. "X = def(Y)" is witnessed with Tr

as in the previous section. So each Lg exists, and L is a definable sub-class.

Recall that our goal is to show that L is a model of "V=L". This might reasonably be
interpreted as meaning that for all x € L there is an & € L such that x € Lg. But we can do
better than this. We want to be able to do the construction above in L itself, so that "V x
Joae L xe Ly" makes sense in L. In particular, L has to be able to interpref
definability, just like V, so at the very least it must be checked that L, which is not known
to model IZFRep, contains the Tr’s and the witnesses and so on. This will be done in the

next section. Even before that, though, it must be shown that w is in L. This we turn to

now.

The argument below seems a bit circuitous, but even if it is unnecessarily so, it still gives
other interesting information about L. Once it is completed, it will be easy to show that the
other related things we need are also in L, and rather conveniently located to boot.
(Incidentally, if the traditional Axiom of Infinity is accepted instead of the alternate
proposed earlier, then the construction of ® is non-absolute. So it would not be enough to
show that L models IZFRep, since L’s o could very well be different from V’s.)




The trick here is that we are allowed to use  to define m. That is, work over L. The

intuition is that bounded assertions about L, should be like those for classical L, because
we have bounded decidability for m, so the classical definition of @ over L, should do. In
order to show that L, satisfies classical logic for bounded formulas, we arithmetize it (i.e.

code it into the integers), and take advantage of the work already done on N.

Although we will actually work with the decoding function, for the sake of intuition we
first define the coding function #: Ly — o inductively. For X = {xq, x1, ..., Xp}, #X =
20%0 + 2#X1 4 2%Xn_ ( The empty set gets the number 0.) The numbers #x; are the base
two components of #X; the property of being a base two component is the arithmetic
counterpart to the membership relation. In what follows we will need a definition for this
relation. One is: x is a base two component of y iff [there is a z < 2X <y such that 2%
divides y-z and 2%+! does not divide y-z]. Since "y-z" is not technically a term in the
language, say "there is a q <y such that y =z + q", and refer to q instead.

The decoding function is a 1-1 function f from ® to V such that f(n) = { f(i) | 1 is a base two
component of n }. Show that for each n € w there is a unique such f, with domain n, by
induction. For n = 0, let f be the empty function. For n+1, first we show uniqueness.
fne1(n) is determined by f41 | (restricted to) n, by the defining property of fj41.
Furthermore, f41 | n satisfies the definition of f;,, which is unique by assumption.
Therefore, there could be only one f;4+1. To show that there is one, take the union of f;
with the appropriate ordered pair. That this {41 is 1-1 depends on some numerical facts
about @ that are left to the reader. Finally, f is the union of these fys. # is 1.

definition 2; is a stack of n 2s: 20 =0, and 20+1 = 22n,

lemma L, =f"2,, and for x, y € Ly, x € y iff #x is a base two component of #y.

proof By induction on n.
For n = 0, check that both sides are the empty set.

For n+1, suppose first that X € Lyy1. X is definable over L. Using #, this translates to a
bounded definition of a subset of 2. (The bounds may be beyond 2, by the translation of
membership, but the definition is still bounded in ®.) Now we use this definition (say ¢) in
N to construct the integer code for X, as follows. Show inductively through 2, that there is
an m e o which correctly codes initial segments of X: for all k < 2, there is an my < 2K




which codes X M k. The inductive step k+1 is where we use decidability to construct
mie1. If @(k) then myy1 = myg + 2K; if —@(k) then myy1 = mg. @(k) v —¢(k), and in either
case M1 € ®. As X is a subset of Ly, my, is our desired code. It is fairly easy to see that

the assertion about membership and base two components also carries along.

The other direction is similar. If m < 2y, clearly it codes a subset of Ly. The definition
we would like to give for f(m) is an explicit list of its members: that is, if f(m) = { xq, x1,
oy Xp), then f(m) = { x I x = XQ V ... V X = Xp }. Show that there is such a formula by
constructing a sequence correct on initial segments of 2y, inductively through 2p. At
successor steps, use decidability to show that the result of your decision is indeed a
formula. QED

corollary All formulas over LQ are decidable.

corollary Ly = f'o.

This is nice, because we will be able to prove nice things about Lg, by induction on ,
examining only one set at a time, not having to concern ourselves with all possible

definitions over Ly, thanks to {.

lemma For all m, n € , if m < n and f(m), f(n) € ORD, then f(m) € f(n).
proof Notice that the property of being an ordinal is bounded, hence decidable.

By main induction on m, with subsidiary induction on n.

For m = 0, if n = 0 then the hypothesis m<n is not met.

For m = 0 and n + 1, f(n+1) is not empty, since f is 1-1, so it has a member by the
decidability of bounded formulas, say x. If #(x) = 0, then we're done. 1f #(x) # 0, then by
induction f(0) € x; since ordinals are transitive, f(0) € f(n+1).

For m+1, if n=0 then the hypothesis m<n is not met.

For m+1 and n+1, assume both f(m+1) and f(n+1) are ordinals. By induction on m, each
contains as members all those ordinals with codes < m; moreover, f(m+1) is exactly { x|
#(x) <m }. If f(n+1) has as a member some set x with code between m+1 and n+1, then
by induction f(m+1) € x; since ordinals are transitive, f(m+1) € f(n+1). If f(n+1) has
f(m+1) itself as a member, then we're done again. If neither of those two conditions

obtains, then f(n+1) = f(m+1), which contradicts the injectivity of f. QED




lemma There is a largest m < n such that f(m) is an ordinal.

proof By induction on n.

For n=0, 0 is as desired.

For n+1, if f(n+1) is an ordinal then n+1 is as desired. If it's not, then apply the inductive

hypothesis to n. QED

lemma For all n, if f(n) € ORD then f(n) e .

proof By induction on n.

f(0) is the empty set, hence € .

If f(n+1) € ORD then f(n+1) = { f(m) | f(m) e ORD andm <n }. Letk be the largest
ordinal < n, by the previous lemma. It is easy to see that f(n+1) is the ordinal successor of
f(k). By induction, f(k) € ®, so f(n+1) € . QED

lemma n is definable over Ly.
proof By induction on n.

0 is any subset of Lo.
If n e def(Ly) = Lnt1, then n+1 € def(Lp41) as {x!xenvx=n}.

QED

proposition ® &€ def(Lg)
proof By the previous lemma, ® is a subset of Lg,. By the penultimate lemma, ORDLw is a

subset of . So ® = { x | x is an ordinal }, as a definition over L.
QED

Not only is @ definable over L, but so is all the syntax we need too. After all, each
bounded part of any syntactic function or relation is a member of L, as can be shown
inductively using decidability again, so any desired function or relation can be pieced
together as the union of those finite parts that satisfy the right inductive properties on their

domains, definably over L.

Proof of (V=IL)IL
This theorem is an easy corollary of:
Main Lemma For all o there is an o € L such that Lg = L.

The proof of the main lemma depends heavily on internalizing the construction of L. within

L itself. The reader could be excused for thinking that this internalization isn’t worth talking




about. After all, there must be a half dozen treatments of this classically, and by the very
nature of the goal these treatments must be fairly constructive, hence any of them should
work intuitionistically. I am tempted in this case to disregard the professional standard
against discussing blind alleys in public, since here especially it captures the flavor of the
subject. But I will restrain myself merely to pointing out that I tried three different classical

proofs, and all of them failed irreparably.

The approach that seems most suited is based on three principles:
1) Be as straightforward as possible. No prenex forms, no universal formulas, no tricks of
any kind. In particular, we will re-examine the construction of L already given, which was

chosen for its straightforwardness.
2) Realize that you’re working inductively. So anything that you do to o you should

already have doneto B (B e o).

3) Work uniformly. Of course no one would be so foolish as to try to split into cases, but
even assuming extra structure on ¢ (for example, proving something only in the case of o

a limit) is trouble. Even if you’d be satisfied having something for some ordinals, prove it

for all ordinals.

So what do you need to get Lq,? Without question you need  as a parameter, as the carrier

of syntax. In conjunction with the principles above, this next definition is immediate.

definition 0aug (0raugmented) = U{ BuglPe o} U {o) U (0+1).

Olaug 18 an ordinal, because f3 € Baye (and, inductively, Baug 1is also an ordinal).

What else do you need? More specifically, what else would you need to get def(La) from
Ly ? One thing is VAR -> X. It’s easy to see that there is an n € ® such that for all Olaug
and forall X e Lotaug (such as Ly), VAR ->X e L(xaug'H]‘ (To recognize whether
something is in VAR -> X all you need is a bit of syntax, i.e. ®, hence the hypothesis of
augmentation.) The reason we can’t just take n to be 1 is that VAR -> X is a few steps up

in V-rank. In fact, n can be chosen to be 4.

Next comes Tr. An examination of the Trys shows that each is simply definable over the
previous one, "simply definable” meaning that it needs only one more step in the L-

hierarchy. But we can do even better than that: Try, in the definition of Try4q can be
replaced by its own definition (with ® as a parameter). So each Try, is in L%ug+7, and Tre

def(Laaug+7). (*7” means just be generous enough with V-ranks; all we need is some fixed




n€ o.) Hence, the function "Q = def(X)" is uniformly definable (A} even) over all B such
that Otayg + 7 < B, with parameter X LOtaug~ In particular, "Q = def(L,)" is definable over
L%uggs with parameter L, uniformly over o. ‘

The final component involves witnessing everything, which requires taking other witnesses
(inductively) and forming ordered pairs, then collecting those pairs into functions, and
other simple set-theoretic operations. As above, this needs some fixed finite number of
steps. Respecting the principles above (and generalizing from some fixed n € o to an

arbitrary v), the next definition is again immediate.

definition o +y v, hereditary addition, is defined inductively on o

oty y=[U{B+y yIPe a}u {a}]+Y.
“+” refers to (standard) ordinal addition, which can be defined inductively no problem (see
[G1] or [G2]). Notice that the first summand is an ordinal, since < 3 + 7y inductively,
hence the ordinal sum is well-defined. (o +p;Y)™ refers to the first summand above.

proof of main lemma This will be done inductively on o. In order to make the inductive

step go through, we actually need a stronger hypothesis. This hypothesis depends on the
choice of an n € . n need only be big enough to do all the operations described above.

The choice of n will not depend on o; any sufficiently large n will do.
€] For all a there is an o* € def ( L(OL&mg +y )~ ) such that Ly = Lo+ and the witness

to "X =def(Lg*)" isin L Olayg + 11> all uniformly.

Assume (1) holds for all < o.

Since o0 < (Qaug +y n)7, Lo € L(aaug +yn) - Let a* be {B1 there is a witness to "X =
def(Lg)" in L(Otang +yny” and Lo D def(Lg) }. Clearly o* € def ( L(Otaug +,n)" ) (using the
augmentation when referring to definabilitéz) and LoD Lgx . Furthermore, using (1)
inductively, Lo = Up<q def(Lp) = Up<g def(Lg+) , and the witnesses to "X = def(Lg#)"
are in Lgaug +yn > hence in L(Otaug +yn)" - 50 L = L. Finally, by the choice of n, the
witnesses can be built in n steps. That is, for each 8 in o* we already have a witness to "X
= def(Lp)", so we need a few steps to build the ordered pair <3, <def(Lp), def(Lp)-
witness>>, and then one more step to collect them into a function (and then separate the
function into the two functions, f(}) = def(L.g) and g(B) = def(Lp)-witness, to be precise).
This witnesses "Y = Lq,". Simultaneously, we build the witness to "Z = def(Lg)", using
L as a parameter. Then collect both these. QED




The main lemma can be read as saying that in L there are enough Lgs. It would be nice to
know that the function o --> L is actually total, too.

lemma FEach set of the form L o 18 closed under the L-function (and the associated

aug Ty

witnessing functions).

remark By earlier observations about the uniform definability of the function Y = def(X)”,
we already know that Loty +y © is closed under it. Hence in the inductive argument

below, we will assume inductively closure under the L- and def- functions, but prove only

closure under the L-function.

proof The argument here, by induction on o, is much like that of the preceding proof, with

a lot more cases.

Olaug +H W= U { (Oﬁaug +H (ﬂ).— +nlnew } , SO wE consider all Ye L(aaug +y W) + s

by induction on n.

n=0: Either ye def Lg,,, or, for some Be Oaygand d e P +y w, ye def L. Within the
latter possibility, split into cases on f3:
CASEL: B e Mayg for somen &€ o 5008 € Naug +y @, and Y€ Ly .4 o, Which is

closed under the functions in question, by induction.
CASEII: B=o: Then & e (o +y ) +n for Some n € w, and this case can be proved
by induction on n.

For n =0, we have either d e n +p® (Me o) or d=o. Since 1M € ndug,

the former possibility was already considered in case I. In the latter possibility,

y e def Ly . Using the inductive hypothesis (or case 1), Lo, +; ©)° contains

the witnesses for all the ordinals in Ly ; moreover, L(Otaug +; @) hasno trouble
recognizing these witnesses as such, since it has @ as a member (which is
needed as a parameter). The definition of yover Lo as { 1 ¢(1) } can then be
changed to U { X1 X = def Ly & @(m)ko } over L0t -+ 0)

For n successor the argument is similar to that above. The only observation that
need be made is that it is not enough to assume that the various witnesses for
Y€ L +, ®) +n are all in L Olaug g © (Consider what the induction step

‘ would then be.). Rather, we need that for all n there is an n* such that all the




witnesses for ye Ly +y ®) +n are in L (Otaug g ®) + 0% The details are left to

the reader.
CASE III: B e w+1 (Notice that this is the lemma for the case o = 0.): There is no

induction involved here. The argument is an unraveling of the definitions and an analysis of

small ordinals, and is left to the reader.

If, on the other hand, ye def Laaug, notice that by work already done, each n € L%ug has
all of its witnesses in L(Otaug + o)y The argument can then proceed as is case II, n=0

above.
n successor: As in case II, n successor above. QED

theorem In L, the function o --> L, is total.
proof Sets of the form Laaug +,; o are cofinal in L (since Lg 1is a subset of Laaug +y ©)-

Now use the previous lemma. QED

Proof of (IZF)IL
Infinity: We have already verified that we L.

Pair and Union: Trivial.

Extensionality: Easy, using that L is a transitive subclass of V.

€ -Induction: Just as in the proof of w-Induction in section on lw, to show induc-
tion for @ in L, use induction in V on the formula “xe L — @(x)”.

Power: Let Xe L. It’s true that VYeP(X) (YeL — Ja Ye Ly). By Collection,
there is a set B such that VYe P(X) (Ye L — JoeB Yel). Let B be TC(B n ORD).
Notice that B is an ordinal; moreover, Lgo PL(X). PL(X) is then definable ovér Lg
(assuming, WLOG, that Xe Lp).

Collection: Similar to Power. Let Xe L. Assume that [Vxe X Jy ¢(x,y) L. Then
Vxe X Jo Jye Lg [@(x,y)]L. By Collection, there is a B such that Vxe X Joe B Jye L
[(p(x,y)]L. As above, for f = TC(B n ORD), Lg suffices.

Separation: This is the hard one. We need to show that

[VX3Y Y = {xeX!| o) }]L,
for all standard formulas ¢. This is done by external induction on ¢. (That is, pick any @;
do the following construction on its finitely many sub-formulas, in order.) We need a
stronger inductive hypothesis, to be able to handle formulas with more than one free

variable:




VX 3Y Y={<x|,..,xpg>€ Xl @(xq, ..., xp) }I-,
where the free variables of @ are included among x1, ... , X, (some of the x;’s may be

dummy). The hard cases are 3 and V.

So suppose @ is Ixg Y(xQ, X1, ... , Xp). By Separation in V, let X’ be { <x1,..,xXp > €
X0 @(xq, ..., xp)& }. Then
V X1, ..., Xp € X* Jo Ixpe Lo [W(xg, X1, ... » xp)IL.
By arguments like those for Power and Collection, there is an ordinal 3 such that
V X1, ..., xp € X Ixpe Lg [W(x0, X1, ..., xp) |-
(WLOG Xe Lg.) Inductively, L. contains
{ <x0, X1, . » xp> € L™ 11 [y(xg, x1, ..., xp)I- ).

To get the desired Y, project the latter set onto its last n components, and intersect with XM,

Now let ¢ be Vxg y(x, X1, ... » Xp). Restricting the range of xg produces a possibly
different subset of X1, to wit

YrR={<X{,...,Xp>€ X"l Vxge R y(xg, x|, ... , xp)k } (Re L).
Using notation suggestively, refer to the Y we’re looking foras Y. In V,let Y¥be { Y e
P(XM1dRe L Y =YR }. By Collection, the R’s in the definition of Y* can be
bounded; WLOG the bound can be taken to be LB. Then YLB =YL, as follows. Since R D
R’ = Yr'2 YR, YLB D Y. For the converse inclusion, let < xjy,..,Xp > € YLB’ and
xp€ L, say xge Ly YLYG Y*, hence YLY: YR for some R € Lg, and YLy; YLB‘ So
< X1, ... ,Xp> € YLY, and y(xg, X1, ... , xp)b.

The other cases on @ are the Boolean operations, which can be done locally.
QED

Questions
1. Does L contain all the ordinals?
2. Classically L is thought of as a fattening of the ordinals. More precisely, there is a Ay

bijection between L and ORD, uniform over all Ly, A limit. Is something like this true for
IL? Is L bijectible with ORDL? Is there a fattening of ORDL to a larger collection ORD of
ordinals which doesn’t change L and has L bijectible with ORD?

3. Does IZFRep prove (IZFRep)t-?
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4. An understanding of some examples would be nice. For instance, consider the recursive
realizability model as developed in McCarty [M]. Is it a model of V=17

5. What's the relationship between the truth in V of the relativization of a formula to L, and
the truth of this formula within L as a structure in its own right? With Tarski or with Kripke
models, there is no difference. With realizability there may well be. To be specific,
consider the formula "V=L". The first theorem of this paper proves, in IZF, its

relativization to L. This means that in McCarty's model, there is a realizer which, when

handed a set in L and a reason it's in L ( e
returns a reason in L it's in L. This does not mean that if we work in
L, we will be able to realize ", Such a realizer would have to take a set which just so
happens to be in L (but no reason need be given) and return a reason in L that the set is n

L. That this is possible is far from clear.
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