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How far up in the L-hierarchy do you have to go to model
Zg—Determinacy?
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(Welch) The least model L, of ¥3-Determinacy is between the
least X >-Admissible and the least ¥,-Non-Projectible ordinals.
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Introduction

Introduction

How far up in the L-hierarchy do you have to go to model
Zg—Determinacy?
(Welch) The least model L, of ¥3-Determinacy is between the
least X >-Admissible and the least ¥,-Non-Projectible ordinals.
Actually, Welch showed, from above, if

> 0 <7 <7

> L’Yo =5 L’Yl

» L, <s, Ly, and

> L., is a limit of admissibles,

then v < 7p.
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Introduction

Introduction

What Welch showed from below:

Definition
B is 0-extendible if for some § Lg <5, Ls.
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What Welch showed from below:

Definition
B is 0-extendible if for some § Lg <5, Ls.
B is (a+1)-extendible if its a Xp-extendible limit of a-extendibles.
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Introduction

What Welch showed from below:

Definition

B is 0-extendible if for some § Lg <5, Ls.

B is (a+1)-extendible if its a Xp-extendible limit of a-extendibles.
0 is k-extendible if its a ¥,-extendible limit of a-extendibles for
each a < k.
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Introduction

Introduction

What Welch showed from below:

Definition

B is 0-extendible if for some § Lg <5, Ls.

B is (a+1)-extendible if its a Xp-extendible limit of a-extendibles.
0 is k-extendible if its a ¥,-extendible limit of a-extendibles for
each a < k.

0 is hyperextendible if (3 is a-extendible for all a < (5.
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Introduction

Introduction

What Welch showed from below:

Definition

B is 0-extendible if for some § Lg <5, Ls.

B is (a+1)-extendible if its a Xp-extendible limit of a-extendibles.
0 is k-extendible if its a ¥,-extendible limit of a-extendibles for
each a < k.

0 is hyperextendible if (3 is a-extendible for all a < (5.

v is greater than the least hyperextendible.
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FITTMs

ITTMs

(Hamkins & Lewis) An Infinite time Turing machine is a regular
Turing machine with limit stages.
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» the machine is in a dedicated state
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(Hamkins & Lewis) An Infinite time Turing machine is a regular
Turing machine with limit stages. At a limit stage:

» the machine is in a dedicated state

» the head is on the 0 cell
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FITTMs

ITTMs

(Hamkins & Lewis) An Infinite time Turing machine is a regular
Turing machine with limit stages. At a limit stage:

» the machine is in a dedicated state
» the head is on the 0 cell

> the content of a cell is limsup of the previous contents (i.e. 0
if eventually 0, 1 if eventually 1, 1 if cofinally alternating)
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FITTMs

ITTMs

(Hamkins & Lewis) An Infinite time Turing machine is a regular
Turing machine with limit stages. At a limit stage:

» the machine is in a dedicated state
» the head is on the 0 cell

> the content of a cell is limsup of the previous contents (i.e. 0
if eventually 0, 1 if eventually 1, 1 if cofinally alternating)

(Welch) The latest stage at which an ITTM can enter into a loop
is at the least 0-extendible (i.e. the least Yp-extendible).
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FITTMs

ITTMs

(Hamkins & Lewis) An Infinite time Turing machine is a regular
Turing machine with limit stages. At a limit stage:

» the machine is in a dedicated state
» the head is on the 0 cell

> the content of a cell is limsup of the previous contents (i.e. 0
if eventually 0, 1 if eventually 1, 1 if cofinally alternating)
(Welch) The latest stage at which an ITTM can enter into a loop

is at the least 0-extendible (i.e. the least Yp-extendible).
(L) The least hyperextendible can be characterized with iterated
ITTMs, which are machines that are allowed certain oracle calls.
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FITTMs

Feedback ITTMs

ITTMs with arbitrary iteration:

A computation may ask a convergence question about another
computation. This can be considered calling a sub-computation.
That sub-computation might do the same. This can continue,
generating a tree of sub-computations. Eventually, perhaps, a
computation is run which calls no sub-computation. This either
converges or diverges. That answer is returned to its calling
computation, which then continues.
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Good examples
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FITTMs

Bad example

0 0 0O4¢—0t—0¢+—0¢+—@
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FITTMs

o
o
o

One can naturally define the course of a computation if and only if
the tree of sub-computations is well-founded. How is this to be
dealt with?

Bad example
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FITTMs

Allow all possible sub-computation calls, even if the tree of
sub-computations is ill-founded, and consider only those for which
the tree of sub-computations just so happens to be well-founded.
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FITTMs

Allow all possible sub-computation calls, even if the tree of
sub-computations is ill-founded, and consider only those for which
the tree of sub-computations just so happens to be well-founded.
So some legal computations have an undefined result: the freezing
computations. The non-freezing computations have a perfectly
well-defined semantics.
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FITTMs

Allow all possible sub-computation calls, even if the tree of
sub-computations is ill-founded, and consider only those for which
the tree of sub-computations just so happens to be well-founded.
So some legal computations have an undefined result: the freezing
computations. The non-freezing computations have a perfectly
well-defined semantics. For the insiders: with this notion of
computation, the writable, eventually writable, and accidentally
writable reals are all the same.
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Results

Theorem
If an FITTM computation converges in a-many steps, then o < .
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Theorem
If an FITTM computation converges in a-many steps, then o < .
If an FITTM computation freezes in a-many steps, then o < .
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Theorem
If an FITTM computation converges in a-many steps, then o < .
If an FITTM computation freezes in a-many steps, then o < .

Proof.

Player | is to build (the X; truth set of) a model M of “V = L and {e}
converges.” Player |l is to find an infinite descending sequence through
the ordinals in I's model.
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Results

Theorem
If an FITTM computation converges in a-many steps, then o < .
If an FITTM computation freezes in a-many steps, then o < .

Proof.

Player | is to build (the X; truth set of) a model M of “V = L and {e}
converges.” Player |l is to find an infinite descending sequence through
the ordinals in I's model. | has a winning strategy in V: play L,. Hence |
hasa w.s. in L,.
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Results

Theorem
If an FITTM computation converges in a-many steps, then o < .
If an FITTM computation freezes in a-many steps, then o < .

Proof.

Player | is to build (the X; truth set of) a model M of “V = L and {e}
converges.” Player |l is to find an infinite descending sequence through
the ordinals in I's model. | has a winning strategy in V: play L,. Hence |
has a w.s. in L. Let o be such a w.s. Have Il do nothing. If | plays L,'s
truth set, we're done.
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Results

Theorem
If an FITTM computation converges in a-many steps, then o < .
If an FITTM computation freezes in a-many steps, then o < .

Proof.

Player | is to build (the X; truth set of) a model M of “V = L and {e}
converges.” Player |l is to find an infinite descending sequence through
the ordinals in I's model. | has a winning strategy in V: play L,. Hence |
has a w.s. in L. Let o be such a w.s. Have Il do nothing. If | plays L,'s
truth set, we're done. If | ever makes an assertion about M which is false

for L, then Il knows the model is non-standard, and must only find an
i.d.c.

Proof continued on next slide. O
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Results

Theorem
If an FITTM computation converges in a-many steps, then a < 7.
If an FITTM computation freezes in c-many steps, then o < .

Proof.

(continued)If | ever plays something false of L,, then Welch showed how
[l can find an i.d.c. in that model, mod the following problem: in M,
there could be ordinals such that
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Results

Theorem

If an FITTM computation converges in a-many steps, then a < 7.
If an FITTM computation freezes in c-many steps, then o < .
Proof.

(continued)If | ever plays something false of L,, then Welch showed how
[l can find an i.d.c. in that model, mod the following problem: in M,
there could be ordinals such that

Bo < ﬁl < Bo < ... < by < b1 < o, ﬂn standard, and Lﬁn <5, L5n.
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Results

Theorem
If an FITTM computation converges in a-many steps, then a < 7.
If an FITTM computation freezes in c-many steps, then o < .

Proof.

(continued)If | ever plays something false of L,, then Welch showed how
[l can find an i.d.c. in that model, mod the following problem: in M,
there could be ordinals such that

Bo < ﬁl < Bo < ... < by < b1 < o, ﬂn standard, and Lﬁn <5, L5n.
Any tree of sub-computations can be adorned with ordinals in a natural

way. In particular, the pair 8,, 9, is assigned to a node which is a parent
to the node of B,y1,0n41-
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Results

Theorem
If an FITTM computation converges in a-many steps, then a < 7.
If an FITTM computation freezes in c-many steps, then o < .

Proof.

(continued)If | ever plays something false of L,, then Welch showed how
[l can find an i.d.c. in that model, mod the following problem: in M,
there could be ordinals such that

Bo < ﬁl < Bo < ... < by < b1 < o, ﬂn standard, and Lﬁn <5, L5n.

Any tree of sub-computations can be adorned with ordinals in a natural
way. In particular, the pair 8,, 9, is assigned to a node which is a parent
to the node of 8,41,0,+1. Hence the 8,'s would give an i.d.c. in {e}'s
sub-computation tree, which was assumed to be well-founded. So that
problem can't happen, giving Il an opportunity to win, forcing | to play
the truth. Bl
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Results

Since we can't get the freezing computations themselves to be in
L., only initial segments of them, perhaps the ordinal of one of
them is ~ itself.
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Results

Since we can't get the freezing computations themselves to be in
L., only initial segments of them, perhaps the ordinal of one of
them is ~ itself.

It would also be nice to have a description of ~ and of the
FITTM-ordinals in terms of reflection/extendibility properties.
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