I TTMswith Feedback

Robert S. Lubarsky
Florida Atlantic University
Dept. of Mathematical Sciences
777 Glades Rd., Boca Raton, FL 33431, USA
Robert.L ubarsky @al um.mit.edu

May 1, 2009

Abstract

Infinite time Turing machines are extended in several waysto allow for iterated
oracle calls. The expressive power of these machines is discussed and in some
cases determined.

1 Introduction

Infinite time Turing machines, or ITTMs, introduced in [2], are regular Turing ma-
chines that are allowed to run for transfinitely many steps. The only changes to the
standard definition of a Turing machinethat need making are what to do at limit stages:
the head goes to the front of the tape(s), the state entered is a dedicated state for limits,
and the value of each cell isthelim sup of the previous values.

That introductory paper also discussed various kinds of oracles computations and
corresponding jump operators. One such jump operator encodes the information “ does
the ITTM with index e on input » converge?’ If e is alowed to call an oracle A, this
is caled the strong jump AY of A: {(e,z) | {e}4(x) |}. Thejump can of course
be used as an oracleitself, and the processiterated: you can, for instance, ask whether
{e}(r) converges, where {e} can itself ask oracle questions of simple (non-oracle)
ITTMs.

We would like to investigate ultimate iterations of this jump, for several reasons.
Iterations of a procedure can lead to new phenomena. A well-known exampleof thatin
acontext similar to the current oneis transfinite iterations of the regular Turing jump.
If you iterate the Turing jump aong any well-order that appears aong the way, you get
the least admissible set containing your starting set, admissible computability theory
being a quantum leap beyond ordinary computability theory [1]. Arguably the next
exampleright after this one would be iterations of inductive definitions. Admissible set
theory is exactly what you need to develop atheory of positive inductive definitions,
the least fixed point of such being 32, definable over any admissible set containing the
definition in question (e.g. its parameters) [1]. If the language of least fixed points of

positive inductive definitions is closed in a straightforward manner, you end up with
the p-calculus. Determining the sets definable in the p-calculus is however anything
but a straightforward extension of admissibility, needing a generalization of the notion
of reflection, gap reflection [4, 5, 3]. Something similar happens with ITTMs, as some
of the extensions are quite different from the base case, as we will see.

A potentia application of this work is in proof theory. The strongest fragment
of second-order arithmetic for which an ordinal analysis has been done to date is IT
Comprehension [6]. Regular (i.e. non-iterated) ITTMs are already more powerful than
that. Perhaps having descriptions of stronger subsystems of analysis other than the
straightforward hierarchy of T, Comprehension principleswill help the proof theorists
make progress.

Thegoal of thisline of inquiry isto examinewhat kind of iterations of ITTMsmake
sense, and to quantify how powerful those iterations are by characterizing the reals, or
what amounts to the same thing ordinals or sets, that can be so written. This situation
is different from that for regular Turing machines, because an ITTM computation can
halt after infinitely many steps, and so ITTMs have the power to write reals. Hamkins
and Lewis insightfully classified the reals that come up in this context as writable if
they appear as the output of a halting computation, eventually writable if they are
eventually the unchanging content of the output tape for a divergent computation, and
accidentally writableif they appear anywhere on any tape during any ITTM computa
tion, even if they are overwritten later. The same concepts apply to ordinals, where an
ordinal is writable (resp. eventually, accidentally) if some real coding that order-type
iswritable (resp. eventually, accidentally). This distinction among these kinds of reals
and ordinals turned out to be crucial to their characterization, as announced in [7] and
detailed in [8], with improved proofs and other resultsin [9]. Let A, ¢, and ¥ respec-
tively be the suprema of the writable, eventualy writable, and accidentally writable
ordinals.

Theorem 1.1. (Welch) (is the least ordinal « such that L, has a ¥, elementary
extension, L isthe smallest X, substructureof L., and Ly, isthe unique X, extension
of L(.

The relativization of thistheoremto areal parameter holds straightforwardly.

In the next section, we give some notions of the syntax and semantics of these
iterations fundamental to what follows. The three after that each gives a different kind
of extension of ITTMs, and about as much asis currently know about them. Some are
characterized pretty fully, othersonly to the point whereit’s clear that there's something
very different going on. Thefinal section offers a generalization of the semantics.

2 Feedback ITTMsand the Tree of Subcomputations

A feedback ITTM (FITTM) isan ITTM with two additional tapes, and an additional
state, which is the oracle query “does the feedback ITTM with program the content of
thefirst additional tape on input the content of the second converge?’ Clearly, the addi-
tional tapes are merely an expository convenience, as they could be coded as dedicated
parts of the original tape.

The semantics of feedback ITTMs s defined via the tree of subcomputations. The
ideais that the tree keeps track of oracle calls by having each one be a child of the
calling computation. Thistreeisin general not itself ITTM computable. Rather, it is
defined within ZF, even if afragment of ZF would suffice, inductively on the ordinals.
At every ordinal stage, each extant node s labeled with some computation, and control
iswith one node.

At stage O, control iswith the root, which we think of as at the top of the downward
growing subcomputation tree. The root is labeled with the index (and input, if any) of
the main computation.

At a successor stage, if the node currently in control is in any state other than the
oracle call, action is as with a regular Turing machine. If taking that action places
that machine in a halting state, then, if there is a parent, the parent gets the answer
“convergent” to its oracle call, and control passes to the parent. If there is no parent,
then the current nodeis the root, and the computation halts. If the additional step does
not place the machinein a halting state, then control stays with the current node. If the
current node makes an oracle call, a new child is formed, after (to the right of) al of
its siblings, labeled with the calling index and parameter; anew machineis established
at that node, with program the given index and with the parameter written on the input
tape; and control passes to that node.

At alimit stage, there are three possibilities. One is that on some final segment
of the stages there were no oracle calls, and so control was always at one node. Then
therules for limit stages of regular ITTMs apply, and the snapshot of the computation
a the node in question is determined (where the snapshot includes all of the current
information about the computation — the state, the tape contents, and so on). If that
snapshot repeats an earlier one, then that computation is divergent. (Here we are using
the standard convention, first articulated in [2], that a snapshot qualifies as repeating
only if it guarantees an infinite loop. In point of fact, a snapshot might be identical
to an earlier one, which guarantees that it will recur w-many times, but it is possible
that at the limit of those snapshots, we escape the loop. So by convention, a repeating
snapshot is taken to be one that guaranteesthat you'rein aloop.) At that point, if there
is a parent, then the parent gets the answer “divergent” to its oracle call, and control is
passed to the parent. If there is no parent, then the node in question is the root, and the
entire computation is divergent.

A second possibility is that cofinally many oracle calls were made, and there is
a node p such that cofinally many of those calls were p’'s children. Note that such a
node must be unique. Then p was active cofinally often, and again the rules for regular
ITTMs at limit stages apply. If p is seen at that stage to be repeating, then control
passes to p's parent, if any, which also gets the answer that p is divergent; if p isthe
root, then the main computation is divergent. If p is not seen to be repeating at this
stage, then p retains control and the computation continues.

Thefinal possibility isthat, among the cofinally many oracle calls made, thereisan
infinite descending sequence, which is the right-most branch of thetree. Thisisbad. It
istroublesome, at best, to define what to do at the next step. Various waysto avoid this
last situation are the subject of the next sections.

3 Pre-Qualified Iterations

The problem cited above is that the subcomputation tree has an infinite descending
sequence. The most obvious way around that is to ensure that that does not happen,
that the treeiswell-founded. That can be enforced by attaching an ordinal to each node
of the tree and requiring that children of a node have smaller ordinals.

That is in essence what is done with the strong jump @Y of [2]. 07 is {(e,z) |
e(x) |}, which isthe same thing as labeling the root of the subcomputation tree with
1, so none of its children, the oracle calls, can themselves make oracle calls. In un-
published work, Phil Welch has show that ¢?" is the smallest ©,-extendible limit of
3,-extendibles, and that \?" and ©:?" are such that Lo+ isthe least ¥, substructure
of Lc‘z" , whichiisitself a3, substructure of Lyyv.

We would like to generalize this to ordinals as large as possible, certainly to or-
dinas greater than 1. An ordinal oracle ITTM isan FITTM with not two but three
additional tapes. On the third tape is written a real coding an ordinal «. The oracle
calls allowed are about other ordinal oracle ITTMs, and on the third tape must be writ-
ten some ordinal 3 < «. Since one of the other tapes is for parameter passing, it is
unimportant just how the ordinals are written on the latest tape. With this restriction,
the third outcome above can never happen, and all computations are well-defined (as
either convergent or divergent).

Aniterated ITTM, or [ITTM, isan FITTM that may make an oracle call about
any ordina oracle ITTM writing on the third tape any ordinal at al. So an IITTM
is like an ordinal oracle ITTM only the length of the ordina iteration is not fixed in
advance. Rather, it islimited only by what the machine figures out to write down.

Definition 3.1. A%, ¢%, and X% are the respective suprema of the ordinals writable,
eventually writable, and accidentally writable by I TTMs.

Definition 3.2. Anordinal o is
e O-extendibleifitis X, extendible,
e §+ l-extendibleif itisa X, extendible limit of -extendibles, and

o ~y-extendible (y alimit) if itis X5 extendibleand alimit of 5-extendiblesfor each
8 <.
As pointed out by the referee, the limit clause actually works perfectly well for all
three clauses.
The definition above relativizes to any parameter . The corresponding notation is
for o to be G[z]-extendible. Notice that, in the limit case, when v < «, « isdso the
limit of ordinals which are themselves limits of 5-extendiblesfor each 5 < ~.

Theorem 3.3. For ordinal oracle I TTMswith ordinal « coded by theinput real « , and
parameter y, the supremum ¢ of the eventually writable ordinalsis the least o[z, y]-
extendible. Moreover, the supremum X of the accidentally writable ordinalsis such that
Ls[za, y] isthe (unique) X, extension of L¢ [z, y|, and the supremum A of thewritable
ordinalsissuchthat L[z, y] isthe smallest ¥, substructureof L¢ [z, y]. Finally, the
writable (resp. eventually, accidentally) reals are those in the corresponding segment
of L[za, y].

Proof. By induction on a.

«a = 0: Thisistherelativized version of Welch's theorem cited above.

a = 3+ 1: Let v be any ordinal less than ¢. Run some machine which eventually
writes . Dovetail that computation with the following. Simulate running all ordinal
oracle ITTMswith input 5 and as parameters the output of the first machine, which is
eventualy ~, and y. Thisis essentially running a universal machine: clear infinitely
many cells on the scratch tape, split them up into countably many infinite sequences,
and on the i*" sequence run a copy of the i** machine. For each of those simulations,
keep asking whether the current output will ever change. (That is, ask whether the com-
putation that continues that simulation until the output tape changes, at which point it
halts, is convergent.) Thisis alegitimate question for the oracle, as 3 < «. Whenever
you get the answer “no,” indicate as much on a dedicated part of the output tape. Even-
tually you will get all and only the indices of the eventually stable computations. So
the least 5[z, y]-extendible ordinal islessthan ¢, and so ¢ isthelimit of such.

Because of this closure under -extendibility, L [z, y] can run correctly the com-
putation of the ordinal oracle ITTMs with input 5. So the rest of the proof — that
the computations of eventually writable reals stabilize by ¢, and that the eventually
writable reals form a X5 substructure of the accidentally writables and a X, extension
of the writables — follows by the same arguments pioneered in [8] and improved upon
in[9]. In order to keep this paper self-contained, and to verify that the new context
here really makes no difference, we present these arguments here.

Suppose, toward a contradiction, that L ; [z, y] satisfies some II, sentence ¢, but
Ls[z,y] doesnot. By the nature of I1, sentences, the set of ordinals < ¥ such that
Le[za,y] = ¢ isclosed, and so contains its maximum. By hypothesis, that maximum
is strictly less than . Take some machine that accidentally writes each of the ordinals
lessthan X. A universal machine will do, for instance, so we will call this machine .
We also need a machine, say p, which eventually writes the ¢’s parameter. It is safe
to assume that there is only one parameter, as finitely many can be combined into one
set by pairing. If no parameter is necessary, then () as a dummy parameter can be used.
Our final machine, cal it e, runs p and « simultaneously. It takes the output of « and
uses it to generate the various L ¢ [z, y|S. When it finds such a set modeling ¢, with
parameter the current output of p, it compares £ to the current content of the output
tape. If the current content is an ordinal greater than or equal to &, nothing is written
and the computation continues. Else ¢ is written on the output. Eventually the output
of p settles down. Once that happens, when the largest such ¢ ever appears, it will be
so written, after which point it will never be overwritten, making & eventually writable.
Thisisacontradiction.

Regarding A, supposeL ¢ [z, y] satisfies some £, formulat with parameters from
L[z, y]. Consider the computation which first computes the parameters using a halt-
ing computation, then runs a machine which eventually writes awitness to) and halts
when it finds one. Thisis ahalting computation for such awitness.

By the foregoing, ¢ is afz,, y]-extendible. That it is the least such is ultimately
because the assertion that any particular cell in a computation stabilizes is ¥5. In
detail, let ¢, betheleast o[z, y|-extendible ordinal and X, its ¥, extension. Since
stabilization isa X assertion, any computation has the same eventually stable cells at
(o 8Sat X,. Moreover, if § is a stage beyond which a certain cell is stablein (, the

assertion that that cell beyond ¢ is stable is IT;, so that same ¢ is aso a stabilization
pointin X,. So the snapshot of acomputation at {,, isthat sameat X, and all looping
has occurred by then.

« alimit: Since ordinal oracle ITTMs with input o« subsume those with input 3 <
a, ¢ is B[z, y]-extendible for each 3 < «, and hence, considering successor s, a
limit of 5[z, y]-extendibles. The rest follows as above. O

Theorem 3.4. (i istheleast x whichis x-extendible, * its smallest 3J; substructure,
and X% its (unique) X, extension.

Proof. For every o < (*, the ordinal oracle ITTMs with input o are also I TTMs.
Hence the least a-extendible is < (%, and ¢% is alimit of a-extendibles. The rest,
again, follows as above. O

4 Freezing Computations

Ancther way to deal with the possible ill-foundedness of the subcomputation tree is
not to worry about it. That is, while no steps are taken to rule out such computations,
there will be some with perfectly well-founded subcomputation trees, even if only by
accident. We remain positive, and focus our attention on those, where we have awell-
defined semantics, including whether a computation converges or diverges. So we can
define the reals writable, eventually writable, and accidentally writable by FITTMs.

Proposition 4.1. Every feedback eventually writable real is feedback writable.

Proof. Let e be acomputation which writes a feedback eventually writable real. Con-
sider an aternative computation which runs e on a dedicated part of the tapes. Every
time e’s output tape changes, the main computation asks the oracle; “Consider the
computation which begins at the current snapshot of e, and continues e’'s computa-
tion until the output tape changes once more, and then halts. Does that converge or
diverge?’ Since e’s tree of subcomputations is well-founded, o is that of the oracle
call, and the oracle call will return a definite answer. If that answer is “converge,” then
the construction continues; if “diverge”, then the construction halts. By hypothesis,
this computation eventually halts, at which point e’s output is written on the output
tape. O

Even worse:
Proposition 4.2. Every feedback accidentally writable real is feedback writable.

Proof. Suppose e is a divergent computation. Asin [2], e then has to loop, and does
so already at some countable stage. The sledgehammer way to see that is that there
are only set-many possible snapshots, so if a computation never halts then it has to
repeat itself. Asto why that would happen at some countable stage, that follows from
Levy absoluteness. More concretely, the argument in [2] for regular ITTMs appliesun-
changed in the current setting. There are only countably many cells. So only countably
many stop changing beneath X ;. Moreover, there is some countable bound o by which
those have all stopped changing. List the remaining cells in an w-sequence cg, ¢1,

Let o be the least stage beyond « at which ¢ changes. Inductively, let o, be the
least stage beyond «,, 1 by which all of ¢g, ¢, ..., ¢,, have changed since stage a;, 1.
The configuration at stage «v,, = lim,, «,, repeats unboundedly beneath 8¢, and soisa
looping stage.

Let o be such that e has already started to loop by o many steps. Suppose we could
write (areal coding) « via a halting computation. Then any real written at any time
during e’s computation would be writable, via the program “write «, then compute e
for the number of steps given by theinteger n in the coding of «, then output whatever’'s
on e's tapes then” (with the desired choice of n, of course). So it suffices to write the
looping time of a computation.

First we determine the first looping snapshot of the machine. At every stage of
the computation in a simulation of e, the oracle is asked: “Consider the computation
that begins with the current snapshot of e, saves it on a dedicated part of the tape, and
continues with a simulation of e on a different part of the tape, halting whenever the
original snapshot is reached again; does this computation halt?’ If the answer is “no,”
the simulation continues. Eventually the answer will be “yes.” That is the first looping
snapshot. (Actually, as pointed out in [2], that’s not quite right. A snapshot can repeat
itself, which would then forceit to repeat w-many times, but the limit could be unequal
to that repeating snapshot, and so this loop could be escaped. The constructions here
could be modified easily enough to avoid this problem.)

The next thing to do would be to write the ordinal number of steps it took to get
to that looping snapshot, and the ordinal number of steps it would take to make one
loop, and then to add them. Since those ordinals are constructed the same way, we will
describe only how to do the second.

During the construction, we will assign integers to ordinals in such away that the
<-relation will be immediate. The construction will take w-many stages, during each
of which we will use up countably (or finitely) many integers, so beforehand assign to
eachn € w countably many integers disjointly to be available at stage n. Furthermore,
each integer has its own infinite part of the tape for its scratchwork.

Let C; (i € w) bethe (simulated) i*" cell of the tape on which we're running (the
simulation of) e. We will need to know which cells change value cofinaly in the stage
of interest (the return of the looping stage) and which don’'t. So simulate the run of e
from the looping stage until its reappearance. Every time C'; changes value, toggle the
i*" cell on another dedicated tape from 0 to 1 to 0. At the end of the computation, the
i*" cell on the dedicated tape will be 0 iff C; changed value boundedly often; so it will
be 1iff C; changed value cofinally often.

Stage 0 starts in the looping snapshot, and is itself split into w-many steps. Those
steps interleave consideration of the cells that changed boundedly often and those that
change cofinally. At step 24 continue the computation until the 5t cell with bounded
change stops changing. That can be determined by asking the oracle whether the cell in
guestion changes before the looping snapshot reappears. While thisis not a converges-
or-diverges question on the face of it, since the computation converges in any case
(either when the cell changes or when the looping snapshot is reached, whichever hap-
pensfirst), one of those outcomes can be changed to atrivial loop, so that the question
isastandard oracle call. If the answer is“yes,” then continue the computation until the
answer becomes “no,” which is guaranteed to happen. At that point, use an available

integer to mark that ordinal stage, which integer is then larger in the ordinal ordering
than all other integers used so far. Also write the current snapshot in that integer's
scratchwork part of the tape. Then proceed to the next step, 2i + 1.

At step 2i + 1, we will consider not just the i*" cofinally changing cell, but also the
jt" suchfor al j < i, for purposes of dovetailing. Sequentially for each j from 0to i,
go to the next stage at which the j** cofinally changing cell changesvalue again. After
doing so for 4, use an avail able integer to mark that ordinal stage, which integer isthen
larger in the ordina ordering than all other integers used so far. Also write the current
snapshot in that integer’s scratchwork part of the tape. Then proceed to step 2(¢ + 1).

Because stage 0 consists of w-many steps, each of which picks out only one integer
in an increasing sequence, it picks out a strictly increasing w-sequence of ordinals. The
limit of that ordinal sequence is the ordina in the computation at which its looping
snapshot reappears. That's because by then we're beyond the ordinal at which any cell
with boundedly many changes will change again, thanks to the even steps, and those
cellswith cofinal changing change cofinally in that ordinal, thanksto the dovetailingin
the odd steps.

To summarize, we have produced an w-sequence cofinal in the ordinal at which the
looping snapshot reappears. Inductively, suppose at stage i > 0 we have an integer
assignment, with <, to asubset of e’sordinal stage, as well as a picture of the snapshot
of the computation each at such stage of the computation. Then for each integer which
isasuccessor in this partial assignment, replicate the construction above with the start-
ing snapshot being the snapshot of e at the predecessor and the ending snapshot being
the snapshot of e at the integer under consideration. By the well-foundedness of the
ordinals, this process ends after w-many stages.

O

It iseasy to seethat the feedback writablerealsarethose containedin theinitial seg-
ment of L given by the feedback writable ordinals, which are also the FITTM clockable
ordinals. We call the set of these ordinals A.

This result removes the basis of the analysis used in weaker forms of ITTM com-
putation. It comes about because the divergence of a computation in this paradigm
can be determined convergently by a computation of the same type. Why doesn’t this
run afoul of some kind of diagonalization result? The answer is that there's no univer-
sal machine! That is, the computations and oracle calls used in the proofs above were
sometimes convergent and sometimes divergent, but conveniently they werein any case
al well-defined: the tree of subcomputationswas well-founded. If it is not, we have no
semantical notion of how the computation should continue or what the outcome should
be. Thisnotion is captured in the following.

Definition 4.3. A computation is freezingif its tree of subcomputationsisill-founded.

Proposition 4.4. Thereisno FITTM computation which decides on an input e whether
the e’ FITTM is freezing.

Proof. If there were, you could diagonalize against the non-freezing computations, for
acontradiction. O

We expect that as with most models of computation, the key to understanding
what’s computable will be an analysis of the uncomputable. While the freezing com-
putations do not have an output or even a divergent computation, they are perfectly
well-defined up until the point when an oracle call is made about a freezing subcom-
putation. For that matter, on the tree of subcomputations, that freezing subcomputation
generatesagood tree underneathit, until it callsits own freezing subcomputation. More
generaly, even for a freezing computation, its subcomputation tree, albeit ill-founded,
is well-defined. Hence the following definition makes sense.

Definition 4.5. Areal isfreezingly writable if it appears anywhere on a tape during
a freezing computation or any of its subcomputations.

We expect that the role that the eventually and accidentally writable reals played
in the understanding of the writable reals for basic ITTMs will be played here by the
freezingly writable reals. In any case, it should be of interest to understand better the
freezing computations. Centrally, what does the subcomputation tree of a freezing
computation look like? Since the computation cannot continue once an infinite path
through the tree develops, that infinite path is unique, and is the right-most path. So
each of the w-many levels on the tree has width some successor ordinal. For each
freezing computation e, let A, be the width of level n of e's subcomputation tree. For
afixed e, there are three possibilities for the A¢ s:

a) A¢ isbounded benesth A.

b) A iscofinal in A.

c) Some \¢, is greater than A.

Option a@) issimply unavoidable: it isasimpletask to write a machine whichimme-
diately makesan oracle call about itself, producing a subcomputation tree of order-type
w* (w backwards).

Options b) and c), as it turns out, are incompatible with each other. To see this,
first note that if ¢) holds for some computation, then n can be chosen to be 1 (level 0
consisting of the root alone). After al, if thisis not the case for somegivene, let e be
some computation that halts at a stage larger than max,,, <, AS,. Use e; to write e;’s
run-time (using methods like those in the main proposition above). Use that ordinal to
run e substituting for the oracle calls an explicit computation until the right-most node
onlevel n — 1 (of e’s original subcomputation tree) becomes active. That is the node
which has more than A-many children, and which is now the root node of the tree of
this modified computation.

Now assumewe haveindicese; and e, of typesb and c respectively (and A= > A).
Simulate e.. Whenever an oracle call is made, write the new length of the top level
in the subcomputation tree (using techniques as above). Use that ordina to simulate
the computation of e, substituting explicit computation for oracle calls and building
explicitly the subcomputation tree. Whenever the run of e, demandsan ordinal greater
than that provided by e .. yet, break off the former computation and return to the latter.
By hypothesis, at acertain point youwill be able seethat e¢;,’s subcomputationtreeisill-
founded. Then write sup,, ., A%, and halt. This would then be a halting computation
of A, contradiction.

Unfortunately, we do not know which of b) or ¢) is excluded. For that matter, there
could be no examples of either! Possibly all freezing computations are of type a),

where those bounds over al freezing es are cofinal in A.

5 Parallel Oracle Calls

With sequential computation, as defined above, once an ill-founded oracle call is made,
the entire computation is freezing. Parallel computation provides an aternative. In its
essence, this is the same as with finite computation. In that setting, what should be
the semantics of “A or B"? That both converge and one is true, or that one is true
regardless of whether the other even converges? Similarly here, a machine could make
a parametrized oracle call. This is perhaps most easily modeled by having another
tape as part of the oracle call. The called computation asks for the convergence of a
computation with index given on the first tape and inputs the second and third tapes.
When making a call, the third tape is blank, but in generating the answer, the oracle
substitutes all possible finite strings (equivalently: all integers) on the blank tape. If
any return a convergent computation, the oracle answers “yes.” If none of them freeze
and all return a divergent computation, the oracle answers “no.” If at least one of the
parallel calls freezes and al those that do not diverge, then the oracle gives no answer
and the current computation freezes.

Notice that the roles of convergenceand divergence could be interchanged here, as
convergent and divergent computations can be interchanged with each other: given e,
ask the oracle whether e converges, if yes, diverge, if no, halt. Of course, if e freezes,
so does this.

Arguments similar to those above show that the parallel writable, parallel eventu-
aly writable, and parallel accidentally writable reals are al the same.

Although it seems likely, we do not have a proof that the parallel writable reas
include strictly more than the feedback writables do.

6 Extending Convergence and Divergence Consistently

For both (sequential) feedback and parallel computation above, the semantics was
given conservatively. That is, the convergence/divergence answers to oracle calls were
forced on us. Evidence for such was an explicit computation in which some tree was
well-founded, as so is absolute. Once well-foundednessis brought into the picture, in-
duction cannot be too far behind. In fact, the process can be described via an inductive
definition.

Let | and T be adigoint pair of sets of computation calls, where a computation
call is a pair consisting of (an index for) a program and a parameter. Given (|, 1),
computations can be defined as convergent or divergent relative to that pair. For the
sake of concreteness we will restrict attention to feedback computation; analogous
considerations apply to parallel computation. When making oracle calls, the given
pair (|, 1) is used as the oracle. Thisis deterministic, as | and 1 are digoint. It is
also monotonic: any computation that asks only oracle calls aready in | or T will be
unaffected by increasing either or both of those; al other computations are freezing,
and so can only thaw by increasing those. As a monotonic operator, it has a least

10

fixed point. Thisisthe semantics given for feedback computation, that is the sensein
which the semantics was conservative. This description of the matter does alow for
considering other fixed points as possible semantics for these computational languages.

References

(1]

(2]

(3]
[4]

(5]

(6]

[7]

8]

(9]

Jon Barwise, Admissible Sets and Structures, Perspectives in Mathematical
Logic, Springer, 1975

Joel Hamkins and Andy Lewis, “Infinite Time Turing Machines,” The Jour nal
of Symbolic L ogic, v. 65 (2000), p. 567-604

Raobert Lubarsky, “Building Models of the p-calculus,” unpublished

Rabert Lubarsky, “ u-definable Sets of Integers,” Journal of Symboalic Logic, v.
58 (1993), p. 291-313

Michael Mdllerfeld, “Generalized Inductive Definitions,” Ph.D. thesis, Univer-
sitét zu Munster, 2002

Michael Rathjen, “Recent Advancesin Ordinal Analysis,” The Bulletin of Sym-
bolic Logic, v. 1 (1995), p. 468-485

Philip Welch, “The Length of Infinite Time Turing Machine Computations,” The
Bulletin of the London Mathematical Society, v. 32 (2000), p. 129-136

Philip Welch, “Eventually Infinite Time Turing Machine Degrees. Infinite Time
Decidable Reals,” The Journal of Symbolic Logic, v. 65 (2000), p. 1193-1203

Philip Welch, “Characteristics of Discrete Transfinite Turing Machine Models:
Halting Times, Stabilization Times, and Normal Form Theorems,” Theoretical
Computer Science, v. 410 (2009), p. 426-442

11

