
ELEMENTARY EPIMORPHISMS BETWEEN MODELS
OF SET THEORY

ROBERT LUBARSKY AND NORMAN LEWIS PERLMUTTER

Abstract. We show that every Π1-elementary epimorphism be-
tween models of ZF is an isomorphism. On the other hand, noniso-
morphic Σ1-elementary epimorphisms between models of ZF can be
constructed, as can fully elementary epimorphisms between models
of ZFC−. Elementary epimorphisms were introduced by Philipp
Rothmaler in [Rot05]. A surjective homomorphism f : M → N
between two model-theoretic structures is an elementary epimor-
phism if and only if every formula with parameters satisfied by N
is satisfied in M using a preimage of those parameters.

1. Introduction

Philipp Rothmaler introduced the concept of the elementary epimor-
phism in [Rot05], weakening the related concept of an elementary sur-
jection studied by George Sacerdote in [Sac74] and [Sac75]. In [Rot05],
Rothmaler analyzed inverse limits of systems of elementary epimor-
phisms between various types of model-theoretic structures. An ele-
mentary epimorphism is a sort of backwards elementary embedding,
which is surjective but need not be injective. Formally, elementary
epimorphisms are defined as follows.

Definition 1. Let M and N be model-theoretic structures over a com-
mon language, L, and let Γ be a collection of formulas. A homomor-
phism f : M → N is an elementary epimorphism if and only if
for every formula ϕ ∈ Γ and for every tuple of elements y0, . . . yn ∈ N
such that N |= ϕ(y0, . . . yn), there is a tuple x0, . . . xn ∈ M such that
M |= ϕ(x0, . . . xn) and such that f(xi) = yi. If Γ is the collection of all
L-formulas, then f is a (fully) elementary epimorphism.

To verify that a function is an elementary epimorphism, one must
verify two properties: the homomorphism property and the elementar-
ity property. Note that the elementarity property implies that every
elementary epimorphism is surjective: to see that x ∈ N is in the image
of an elementary epimorphism f , use the formula x = x.

One of us (Perlmutter) analyzed inverse limits of systems of ele-
mentary embeddings between models of set theory in his dissertation
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[Per13]. Rothmaler asked me whether I had also cosidered inverse-
directed systems of elementary epimorphisms between models of set
theory, motivating the present paper. The main results are as fol-
lows. It is easy to construct Σ1-elementary epimorphisms between
models of ZF that are not isomorphisms (theorem 2). However, every
Π1-elementary epimorphism between models of ZF is an isomorphism
(theorem 3). It is possible to construct elementary epimorphisms be-
tween weaker models of set theory, in particular between models of
ZFC−, that is, ZFC without power set (theorem 7). Furthermore, we
provide an example of an inverse-directed system of such elementary
epimorphisms with an inverse limit (section 4).

2. Elementary epimorphisms between models of ZF

Theorem 2. Let N ⊆ M be transitive models of ZF with the same
ordinals. Let f : M → N be defined as follows. For all x ∈ N , let
f(x) = x. Otherwise, let f(x) = Vα ∩ N , where α is the ∈-rank of x.
Then the function f is a Σ1-elementary epimorphism.

Proof. To show that f is a homomorphism, let x0, x1 ∈ M such that
x0 ∈ x1. Break the proof into cases depending on whether each of
x0, x1 is an element of N . The case x1 ∈ N, x0 /∈ N is impossible
since N is transitive. In the other three cases, it is immediate to check
that f(x0) ∈ f(x1). That f satisfies the main defining property of a
Σ1-elementary epimorphism follows from the fact that Σ1 formulas are
upwards absolute between transitive models of ZF. �

The following corollaries are immediate.

• There is a Σ1-elementary epimorphism f : V → L.
• If V [G] is a forcing extension of V , then there is a Σ1-elementary

epimorphism f : V [G]→ V .

Next, we prove that every Π1-elementary epimorphism between mod-
els of ZF is an isomorphism.

Theorem 3. Let M and N be (not necessarily transitive) models of
ZF. Let the function f : M → N be a Π1-elementary epimorphism.
Then f is an isomorphism.

Proof. As a preliminary result, we will show that f maps the ordinals
of M isomorphically onto the ordinals of N . Since the statement “α
is an ordinal” is ∆ZF

0 , it follows from the elementarity of f that for
each ordinal α of N , there is an ordinal α0 of M such that f(α0) = α.
Furthermore, by the homomorphism property of f , if α0 and β0 are
ordinals of M such that f(β0) = f(α0), then α0 = β0. So it remains
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to be shown that for every ordinal γ of M , the set f(γ) is an ordinal
of N . If there is an M -ordinal δ such that γ <M δ and such that f(δ)
is an ordinal of N , then f(γ) <N f(δ), so that f(γ) is an ordinal of
N . The only other possibility is that for every N -ordinal α there is an
M -ordinal α0 such that f(α0) = α and such that α0 <M γ. But this
would imply by the homomorphism property of f that every ordinal
of N is an N -element of f(γ), which is impossible, because then f(γ)
would be a proper class in the sense of N .

With this preliminary complete, we present the main proof. To show
that f is an isomorphism, it suffices to show that f is injective. Towards
this end, let y ∈ N , and suppose that x,w ∈ M are both preimages
of y, that is, f(x) = f(w) = y. Let β be an ordinal of M such that
M believes that both w and x are subsets of Vβ. Consider the set S of
disjoint two-part partitions of Vf(β) in N . To be precise,

N |= S = { { a, b } ∈ Vf(β)+2 | a ∪ b = Vf(β) & a ∩ b = ∅ }.

The formula above defining S in N is ΠZF
1 . (In particular, { a, b } ∈

Vβ+2 is ∆ZF
0 , and a ∪ b = Vβ is ΠZF

1 .) Therefore, by the elementarity
of f , along with the fact that f is injective on the ordinals of M , it
follows that there is a set S0 in M such that f(S0) = S, and such that
S0 is the set of disjoint two-part partitions of Vβ in M. That is to say,

M |= S0 = { { a, b } ∈ Vβ+2 | a ∪ b = Vβ & a ∩ b = ∅ }.

In particular, M believes that the sets {x, Vβ − x } and {w, Vβ − w }
are elements of S0. Since the function f is an ∈-homomorphism, it
follows from the structure of the set S that

f
(
{x, Vβ − x }M

)
= { y, Vf(β) − y }N = f

(
{w, Vβ − w }M

)
In particular,

f
((
Vβ − x

)M)
=
(
Vf(β) − y

)N
= f

((
Vβ − w

)M)
.

Suppose towards a contradiction that x 6= w. Without loss of general-
ity, there is u ∈M x such that u /∈M w. Since f is a homomorphism, it
follows that f(u) ∈N f(x) = y, but also that f(u) ∈N f

(
(Vβ −w)M

)
=(

Vf(β) − y
)N

. This contradiction completes the proof. �

The following corollary follows immediately, because any isomor-
phism between transitive models of ZF is the identity map.

Corollary 4. If M and N are transitive models of ZF and f : M → N
is an elementary epimorphism, then M = N , and f is the identity
map.
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Theorem 3 relies on the axiom of extensionality, so it is tempting
to think that an elementary epimorphism could be obtained between
two models of ZFA (ZF with atoms, sometimes also called ZF with
ur-elements) by collapsing two atoms into one. However, this is not
possible – it would run afoul of the same argument – if there are two
atoms a1, a2, such that f(a1) = f(a2) then consider the partition of the
set of all atoms of the target model into two parts, one part consisting
of just f(a1), the other consisting of all the other atoms. This partition
would have to have a preimage which is a partition of all the atoms,
but either both a1 and a2 are in the first part of the preimage partition,
or neither is. So by the same argument as that of theorem 3, there is
no elementary epimorphism between models of ZFA.

3. Elementary epimorphisms between models of ZFC−

While there cannot be an elementary embedding between two models
of ZF, it is possible to construct an elementary epimorphism between
two models of ZFC−, that is, ZFC without power set and with collection
instead of replacement. (The paper [GHJ] explains collection should
be used in the correct formulation for ZFC without power set. Using
replacement instead of collection results in a theory which fails to prove
several desirable statements.) This construction will make use of the
following theorem of Caicedo.

Theorem 5 ([Cai06, lemma 2.1]). Let P = Add(ω, ω1) denote the forc-
ing with finite conditions that adds ω1-many mutually generic Cohen
reals. Let G1 be P-generic over V , and let G2 be P-generic over V [G1].
Then there is an elementary embedding j : L(R)V [G1] → L(R)V [G1][G2].
This elementary embedding j has no critical point, and j(r) = r for
every real r ∈ RV [G1].

The embedding of theorem 5 is defined by noting that L(R) =
HOD(R), and so every element of L(R)V [G1] can be encoded by an
ordinal and a real. This same ordinal and real encode an element of
the L(R)V [G1][G2] as well, and so there is only one possible way to define
the embedding.

Note that in theorem 5, the definition of P is absolute between models
of ZFC with the same ω1, so that in particular, P = Add(ω, ω1) =
Add(ω, ω1)

V [G1].
The following lemma will also be used in the elementary epimor-

phism construction. Note that in any model of ZFC, the hereditarily
countable sets form a model of ZFC−.
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Lemma 6. Let G ⊆ Add(ω, ω1) be L-generic. Then the hereditarily
countable sets (denoted HC) of L[G] are the same as the hereditarily
countable sets of L(R)L[G], and these sets are given by

HCL[G] =
⋃
β<ωL

1

LωL
1
[G � β].

Proof. Let x ∈ L[G] be hereditarily countable in L[G]. The set x can
be encoded by some real r using the standard technique of coding with
sets of ordinals.1 This encoding can be decoded in L(R)L[G], and the
encoding witnesses the hereditary countability of x in L(R)L[G], so the
first part of the lemma is proven.

Since the real r is determined by at most countably many forcing
conditions as counted in L[G], and since the forcing Add(ω, ω1) does
not collapse cardinals, it follows that there is an ordinal β < ωL1 such
that r ∈ L[G � β]. Let X be a countable elementary substructure of
L[G � β] such that r ∈ X. By the condensation lemma, the Mostowski
collapse of X has the form Lα[G � β] for some ordinal α < ωL1 . The
conclusion of the lemma follows. �

With these preliminaries established, we are ready to construct an
elementary epimorphism between two models of ZFC−.

Theorem 7. Let P = Add(ω, ω1), as defined in L. Let G1 be P-
generic over L, and let G2 be P-generic over L[G1]. Then there is an
elementary epimorphism from the hereditarily countable sets, HC2, of
L[G1][G2] to the hereditarily countable sets, HC1, of L[G1].

Proof. Let R1 denote the reals of L[G1], and let R2 denote the reals of
L[G1][G2]. Let j : L(R1)→ L(R2) be the elementary embedding given
by theorem 5.

The restriction of j to HC1 is an elementary embedding, j � HC1 :
HC1 → HC2. Indeed, since j fixes every real and every hereditarily
countable set is encoded by a real, it follows from lemma 6 that j � HC1

is given by the inclusion map. Define an elementary epimorphism, f :
HC2 → HC1, as follows. For all x in HC1, let f(x) = j−1(x) = x. Since
HC1 is transitive, the rest of f can be defined using ∈-recursion. The
definition takes place in L[G1][G2]. Note that the forcing Add(ω, ω1)
does not collapse any cardinals, so the models L,L[G1], and L[G1][G2]
have the same countable ordinals.

1This standard technique works as follows. First well-order the transitive closure
of {x }, and then use this well-ordering along with Gödel pairing to let r encode
the set-membership relation, ∈x, on this transitive closure. To decode x, note that
the transitive closure of {x } is equal to the Mostowski collapse of (ω,∈x).



6 ROBERT LUBARSKY AND NORMAN LEWIS PERLMUTTER

Suppose that x ∈ HC2−HC1 and that f(w) is defined for all w ∈ x.
There is an at most countable enumeration, 〈wn〉, of the elements of
x. For each n ∈ ω, by lemma 6, there exist ordinals αn, βn < ωL1 such
that f(wn) ∈ Lαn [G1 � βn]. It follows that there is a countable ordinal
γ such that for all natural numbers n, f(wn) ∈ Lγ[G1 � γ]. Without
loss of generality, we can assume that γ is a limit ordinal and that
if x has the form Lδ[G � δ] for some ordinal δ, then γ > δ. (These
additional assumptions are not necessary for the current proof, but it
will be useful for an application in section 4.) Let f(x) = Lγ[G1 � γ]
for the least ordinal γ meeting all the conditions above.

The function f has been fully defined. The verification that f is an
elementary epimorphism is routine: the construction of f ensures that
f is an ∈-homomorphism, and the elementarity property of f follows
immediately from the fact that j is an elementary embedding.

�

4. An inverse limit of elementary epimorphisms between
models of ZFC−

In [Rot05, section 3], Rothmaler studied inverse limits of elementary
epimorphisms between modules. We extend this work by producing an
example of an inverse limit of elementary epimorphisms between models
of ZFC−. More precisely, we mean an inverse limit in the category
where the objects are models of ZFC− and the arrows are elementary
epimorphisms. This differs from Rothmaler’s approach, where he spoke
of the inverse limit in a category where the arrows were only required
to be homomorphisms and then checked which formulas were preserved
from the inverse-directed system to the inverse limit. The existence of
an inverse limit in our sense is related to the preservation of formulas
in Rothmaler’s sense.

It should be noted that in the category of model-theoretic structures
and elementary epimorphisms, it is not always the case that all formulas
are preserved to the thread class. Rothmaler gives an example of such
a system where formulas are not preserved in [Rot05, example 5.3]. In
this example, he does not explicitly say that the epimorphisms are fully
elementary, but this full elementarity follows from his comment in the
first paragraph of page 476.

Our example comes from an iteration of the elementary epimorphism
of theorem 7. We begin by repeating the construction of Caicedo’s
elementary embedding to obtain a directed system of elementary em-
beddings of order type ω, as follows. Beginning in L, force ω many
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times to add ω1 many Cohen reals, obtaining an ω-sequence of models:
L[H1], L[H1][H2], L[H1][H2][H3], . . .

For each n, identify the model L[H1] · · · [Hn] with the model L[Gn],
where Gn adds an ω1-sequence of Cohen reals, and for each k ∈ ω,
the kth real of Gn encodes the kth reals of H1 through Hn. This
ensures that whenever n > m, for all countable limit ordinals γ, the
set Lγ[Gn � γ] properly contains Lγ[Gm � γ].

L(R)L[G1] ⊂
j1,2 - L(R)L[G2] ⊂

j2,3 - L(R)L[G3] ⊂
j3,4 - · · ·

As noted in the proof of theorem 7, each embedding jn,n+1 fixes
every hereditarily countable set. Therefore, by restricting this directed
system to the hereditarily countable sets HCn of each model L(R)L[Gn],
we obtain an elementary chain. We will denote the union of this chain
by HCω.

HC1 ≺ HC2 ≺ HC3 ≺ · · ·HCω
Using the technique of theorem 7, we construct elementary epimor-

phisms fn+1,n : HCn+1 → HCn, and we extend these epimorphisms to
an inverse-directed system by composition. Next, for each n, we define
a map fω,n : HCω → HCn as follows. Given x ∈ HCω, to determine
fω,n(x), first let m ≥ n be minimal such that x ∈ HCm. Then let
fω,n(x) = fm,n(x). It is easy to check that these maps f , illustrated
below, commute.

HCω

· · ·

· · ·
f4,3
-- HC3

f3,2
--

f
ω,3

--

HC2
f2,1

--

fω,2

--
HC1

fω,1

--

Proposition 8. The model HCω along with the corresponding maps
fω,n comprise the inverse limit of the inverse directed system illustrated
immediately above.

Proof. We must show that the maps fω,n are elementary epimorphisms
and that the purported inverse limit satisfies the universal property.

To see that the map fω,n is an elementary epimorphism, first note
that this map is surjective because fω,n(x) = x whenever x ∈ HCn. Us-
ing this fact, the elementarity property of fω,n follows immediately from
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the fact that HCn ≺ HCω. Finally, that fω,n is an ∈-homomorphism
can be verified directly from its definition, since the fm,n are ∈-homomorphisms.

To check the universal property, suppose that (M, 〈gn〉n∈ω) is an-
other natural source for the system. We must exhibit an elementary
epimorphism g so that the diagram below commutes.

HCω

· · ·

· · ·
f4,3-- HC3

f3,2 --

f
ω,3

--

HC2

f2,1 --

fω,2

--
HC1

fω,1

--

· · ·

M

g

66

g1

--

g2

--

g3

--

Towards this end, we consider the threads through the system, that
is, the sequences of the form 〈xn〉n∈ω such that for each n, we have
xn ∈ HCn and fn+1,n(xn+1) = xn. A thread is induced by x ∈ HCω
if it has the form 〈fω,n(x)〉, and similarly, it is induced by y ∈ M if it
has the form 〈gn(y)〉.2

We claim that every thread is 〈xn〉 is eventually constant as n→ ω.
To verify this claim, first note that once xn+1 = xn, the thread must
remain constant for all larger n. Additionally, for any m ∈ ω, the
only way to have xm+2 6= xm+1 6= xm is if xm+1 = Lδ[Gn � δ] and
xm = Lγ[Gn � γ] where δ < γ. Thus, if the thread were not eventually
contant, there would be an infinite decreasing sequence of ordinals.

Define the map g as follows. Suppose that some x ∈ M induces
the thread with eventual constant value y. Then let g(x) = y. To see
that g is an ∈-homomorphism, note that given sets a, b ∈ M , there
exists some n such that g(a) = gn(a) and g(b) = gn(b). Since gn is
an ∈-homomorphism, then so is g. To check the elementarity property
of g, suppose that HCω |= ϕ(a1, . . . ak). Choose some n sufficiently
large such that a1, . . . ak ∈ HCn and such that for each i ≤ n, the set
ai does not have the form Lγ[Gn � γ]. The map gn is an elementary
epimorphism, and HCn ≺ HCω, so there are sets b1, . . . bn ∈ M such
that M |= ϕ(b1, . . . bn) and such that gn(bi) = ai. Since each ai does not

2It is possible that M and HCω have nonempty intersection, but the meaning
of induce will always be clear from the context.
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have the form Lγ[Gn � γ], the thread induced by bi must have constant
value ai at all positions with index ≥ n. Therefore, g(bi) = gn(bi) = ai,
so the proof is complete. �
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