## Part 3: Required Proofs for Probability and Statistics Qualifying Exam

In what follows $X_{i}$ 's are always i.i.d. real random variables (unless otherwise specified).

You are allowed to use some well known theorems (like Lebesgue Dominant Convergence Theorem or Chebyshev inequality), but you must state them and explain how and where do you use them.

1. Prove that

$$
\text { if } X_{n} \rightarrow X_{0} \text { in probability, then } X_{n} \rightarrow X_{0} \text { in distribution. }
$$

Offer a connterexample for the converse.
2. Prove that

$$
\text { if } E\left|X_{n}-X_{0}\right| \rightarrow 0 . \quad \text { then } X_{n} \rightarrow X_{0} \text { in probability. }
$$

Offer a connterexample for the converse
3. We define $d_{B L}\left(X_{n}, X_{0}\right)=\operatorname{Sup}_{H \in B L}\left|E H\left(X_{n}\right)-E H\left(X_{0}\right)\right|$, where $B L$ is a set of all real functions that are Lipshitz and bounded by 1. Prove that

$$
\text { if } d_{B L}\left(X_{n}, X_{0}\right) \rightarrow 0, \quad \text { then } P\left(X_{n} \leq t\right) \rightarrow P\left(X_{0} \leq t\right)
$$

for every $t$ for which function $F(t)=P\left(X_{0} \leq t\right)$ is continuous.
4. Prove that

$$
\text { if } X_{n} \rightarrow X_{0} \text { in probability and } Y_{n} \rightarrow Y_{0} \text { in distribution, }
$$

then

$$
X_{n}+Y_{n} \rightarrow X_{0}+Y_{0} \text { in distribution. }
$$

5. Prove that if $E X_{i}^{2}<\infty$, then

$$
\frac{1}{n} \sum_{i=1}^{n} X_{i} \rightarrow E\left(X_{1}\right) \text { in probability. }
$$

6. (Count as two) Prove that if $E\left(\left|X_{i}\right|\right)$ exists, then

$$
n^{-1} \sum_{i=1}^{n} X_{i} \rightarrow E X_{1} \text { in probability }
$$

7. Prove that if $E X_{i}^{4}<\infty$, then

$$
n^{-1} \sum_{i=1}^{n} X_{i} \rightarrow E X_{1} \text { a.s. }
$$

Hint: Work with: $P\left(\cap_{n=1}^{\infty} \cup_{k=n}^{\infty}\left|n^{-1} \sum_{i=1}^{n} X_{i}-E X_{1}\right|>\varepsilon\right)$.
8. (Count as two) Prove that if $E\left|X_{i}\right|^{3}<\infty$, then

$$
n^{-1 / 2} \sum_{i=1}^{n}\left(X_{i}-E X_{1}\right) \rightarrow Z \text { in distribution, }
$$

where $Z$ is a centered normal random variable with $E\left(Z^{2}\right)=\operatorname{Var}\left(X_{i}\right)=\sigma^{2}$.
9. Prove: For any $p, q>1$ and $\frac{1}{p}+\frac{1}{q}=1$

$$
E|X Y| \leq\left(E|X|^{p}\right)^{1 / p}\left(E|X|^{q}\right)^{1 / q}
$$

10. Prove that if

$$
X_{n} \rightarrow X_{0} \text { in probability and }\left|X_{i}\right| \leq M<\infty,
$$

then

$$
E\left|X_{n}-X_{0}\right| \rightarrow 0
$$

11. (Count as two) Let $F_{n}(t)=\frac{1}{n} \sum_{i=1}^{n} 1_{\left\{X_{i} \leq t\right\}}$ and $F(t)=P\left(X_{i} \leq t\right)$ be a continuous function. Then

$$
\sup _{t}\left|F_{n}(t)-F(t)\right| \rightarrow 0 \text { in probability. }
$$

12. Let $X$ and $Y$ be independent Poisson random variables with their parameters equal $\lambda$. Prove that $Z=X+Y$ is also Poisson and find its parameter.
13. Let $X$ and $Y$ be independent normal random variables with $E(X)=\mu_{1}, E(Y)=$ $\mu_{2}, \operatorname{Var}(X)=\sigma_{1}^{2}, \operatorname{Var}(Y)=\sigma_{2}^{2}$. Show that $Z=X+Y$ is also normal and find $E(Z)$ and $\operatorname{Var}(Z)$.
14. Let $X_{n}$ converge in distribution to $X_{0}$ and let $f: R \rightarrow R$ be a continuous function. Show that $f\left(X_{n}\right)$ converges in distribution to $f\left(X_{0}\right)$.
15. Using only the Axioms of probability and set theory, prove that
a)

$$
A \subset B \Rightarrow P(A) \leq P(B)
$$

b)

$$
P(X+Y>\varepsilon) \leq P(X>\varepsilon / 2)+P(Y>\varepsilon / 2)
$$

c) If $A$ and $B$ are independent events, then $A^{c}$ and $B^{c}$ are independent as well.
d) If $A$ and $B$ are mutually exclusive and $P(A)+P(B)>0$, show that

$$
P(A \mid A \cup B)=\frac{P(A)}{P(A)+P(B)}
$$

16. Let $A_{i}$ be a sequence of events. Show that

$$
P\left(\cup_{i=1}^{\infty} A_{i}\right) \leq \sum_{i=1}^{\infty} P\left(A_{i}\right) .
$$

17. Let $A_{i}$ be a sequence of events such that $A_{i} \subset A_{i+1}, i=1,2, \ldots$ Prove that

$$
\lim _{n \rightarrow \infty} P\left(A_{n}\right)=P\left(\cup_{i=1}^{\infty} A_{i}\right) .
$$

18. Formal definition of weak convergence states that $X_{n} \rightarrow X_{0}$ weakly if for every continuous and bounded function $f: R \rightarrow R, E f\left(X_{n}\right) \rightarrow E f\left(X_{0}\right)$. Show that:

$$
X_{n} \rightarrow X_{0} \text { weakly } \Rightarrow P\left(X_{n} \leq t\right) \rightarrow P(X \leq t)
$$

for every $t$ for which the function $F(t)=P(X \leq t)$ is continuous.
19. (Borel-Cantelli lemma). Let $A_{i}$ be a sequence of events such that $\sum_{i=1}^{\infty} P\left(A_{i}\right)<$ $\infty$, then

$$
P\left(\cap_{n=1}^{\infty} \cup_{k=n}^{\infty} A_{k}\right)=0 .
$$

20. Consider the linear regression model $Y=X \beta+e$, where $Y$ is an $n \times 1$ vector of the observations, $X$ is the $n \times p$ design matrix of the levels of the regression variables, $\beta$ is an $p \times 1$ vector of the regression coefficients, and $e$ is an $n \times 1$ vector of random errors. Prove that the least squares estimator for $\beta$ is $\hat{\beta}=\left(X^{\prime} X\right)^{-1} X^{\prime} Y$.
21. Prove that if $X$ follows a F distribution $F\left(n_{1}, n_{2}\right)$, then $X^{-1}$ follows $F\left(n_{2}, n_{1}\right)$.
22. Let $X_{1}, \cdots, X_{n}$ be a random sample of size $n$ from a normal distribution $N\left(\mu, \sigma^{2}\right)$. We would like to test the hypothesis $H_{0}: \mu=\mu_{0}$ versus $H_{1}: \mu \neq \mu_{0}$. When $\sigma$ is known, show that the power function of the test with type I error $\alpha$ under true population mean $\mu=\mu_{1}$ is $\Phi\left(-z_{\alpha / 2}+\frac{\left|\mu_{1}-\mu_{0}\right| \sqrt{n}}{\sigma}\right)$, where $\Phi($.$) is the cumulative distribution$ function of a standard normal distribution and $\Phi\left(z_{\alpha / 2}\right)=1-\alpha / 2$.
23. Let $X_{1}, \cdots, X_{n}$ be a random sample of size $n$ from a normal distribution $N\left(\mu, \sigma^{2}\right)$. Prove that (a) the sample mean $\bar{X}$ and the sample variance $S^{2}$ are independent; (b) $\frac{(n-1) S^{2}}{\sigma^{2}}$ follows a Chi-squared distribution $\chi^{2}(n-1)$.
