Demographic population cycles and \mathcal{R}_0 in discrete-time epidemic models

Pauline van den Driessche¹ Abdul-Aziz Yakubu²

¹ Department oif Mathematics and Statistics, University of Victoria, Victoria, V8W 2Y2, BC, Canada ² Department of Mathematics, Howard University, Washington, DC 20059, USA ayakubu@howard.edu

A general autonomous discrete-time infectious disease model is used to extend the next generation matrix approach to calculate the basic reproduction number, \mathcal{R}_0 , in populations with locally asymptotically stable periodic k-cycles in the disease free system, where $k \ge 1$. Under the period k demographic assumption, it is shown that the disease goes extinct if $\mathcal{R}_0 < 1$, but persists if $\mathcal{R}_0 > 1$. Using the Ricker recruitment function, the results are applied to a Susceptible-Infectious-Recovered (SIR) disease model, and to an Infectious Salmon Anemia Virus (ISAv) model. For $\mathcal{R}_0 > 1$, simulations show that the disease-free period k cycle drives the SIR disease dynamics, but not the ISAv dynamics.

^{*}Mini-Symposium: Mathematical Epidemiology