Mathematical Model and Optimal Control of the Transmission Dynamics of Avian Spirochaetosis

Blessing Emerenini¹ Joy I. Uwakwe², Simeon C. Inyama²

¹ Oregon State University, Corvallis, OR 97331, Oregon state, US ² Federal University of Technology, Imo State Owerri West, 460114, Nigeria.

Avian Spirochaetosis is an acute endemic tick-borne disease of birds, caused by *Borrelia anserins*, a species of *Borrelia* bacteria. In this paper, we present a compartmental mathematical model of the disease for the bird population and Tick population. The disease equilibrium and the conditions for reaching a stable disease-free equilibrium were determined. The analysis by Lyapunov method showed both local and global stability. Further investigation involved the introduction of controls to the model; the existence and uniqueness of optimal control were established. Finally, the effect of the controls were investigated using numerical solutions.

References

 J. Uwakwe, S.C. Inyama, B.O. Emerenini. Mathematical Model and Optimal Control of the Transmission Dynamics of Avian Spirochaetosis (TICK Fever). Under Review

^{*}Mini-Symposium: Recent Advances in Epidemiological Modeling Arising from Human, Animal and Plant Communities